
A Possible Problem (Interview Question)

You got a list of items, where every item 
has a value and a weight. You got a bag 

that holds a maximum weight of X.

Write a program that maximizes the 
value of the items you put into the bag 
whilst ensuring that you don’t exceed 

the maximum weight.

items = [
{id: ‘a’, val: 10, w: 3},
{id: ‘b’, val: 6, w: 8},
{id: ‘c’, val: 3, w: 3}

]

maxWeight = 8

bag = [‘a’, ‘c’] // solution

Value: 13
Weight: 6 (< 8)Knapsack problem

This is being asked to check your problem-solving skills.



Algorithms: What and Why?

An Algorithm
A sequence of steps (instructions) to solve a clearly defined problem.sequence of steps clearly defined problem

The same steps always lead to the 
same solution of a problem (given 

the same inputs)!

Every program is an algorithm! Or: 
Every program consists of many 

smaller algorithms

As a programmer, you need to be able to 
solve problems (efficiently)!



What is the “Best Possible Solution”?

Minimum amount of code?

Best performance?

Least memory usage?

Personal preference?



Measuring Performance (Time Complexity – Big O)

function sumUp(n) {
let result = 0;
for (let i = 1; i <= n; i++) {

result += i;
}
return result;

} n

Time

100 1,000 10,000

A bigger number leads 
to more loop iterations, 
hence time increases in 

a linear way.

Linear Time

Constant Time

Quadratic Time

Cubic Timen

Time

100 1,000 10,000

We care about the trend/ kind of 
function.

Big O Notation

O(1)

O(n)

O(n2)

O(n3)



Deriving the Time Complexity Function

function sumUp(n) {
let result = 0;
for (let i = 1; i <= n; i++) {

result += i;
}
return result;

}

Count the number of expression executions.

n = 1 n = 3 n = 10 n = n



Deriving the Time Complexity Function

function sumUp(n) {
let result = 0;

for (let i = 1; i <= n; i++) {

result += i;

}
return result;

}

Count the number of expression executions.

n = 1 n = 3 n = 10 n = n

1

1

1

1

1

1

3

1

1

1

10

1

1

1

n

1

T = 1 + 1 + n + 1 = 3 + n = 3 + 1 * n



Deriving Constant Time Complexity

function sumUp(n) {
return (n / 2) * (n + 1);

}

Count the number of expression executions.

n = 1 n = 3 n = 10 n = n

1 1 1 1

T = 1



Deriving Big O (Asymptotic Analysis)

1 Define the function T = a*n + b

n

Time

100 1,000 10,000
2 Find the fastest 

growing term
T = a*n + ba*n

3 Remove the 
coefficient

T = a*n

T = nO(n)

T = 1*n + 3



Deriving Big O (Asymptotic Analysis)

1 Define the function T = 1

n

Time

100 1,000 10,000
2 Find the fastest 

growing term
T = 1

3 Remove the 
coefficient

T = 1

T = 1O(1)

T = 1



Using Big O to Compare Algorithms

O(1)

O(n)

O(log n)

O(n2)

O(2n)

n (number of input) has no effect 
on the time the algorithm takesConstant Time Complexity

Execution time grows 
logarithmically with n

Logarithmic Time 
Complexity

Execution time grows linearly
with nLinear Time Complexity

Execution time grows 
quadratically with n

Quadratic Time 
Complexity

Execution time grows 
exponentially with n

Exponential Time 
Complexity



Practice Time!

Write an algorithm that takes an array of numbers as input and 
calculates the sum of those numbers.

Define the Time Complexity of that algorithm and determine 
what the lowest possible Time Complexity is for this problem.

function sumNumbers(numbers) { ??? }

sumNumbers([1, 3, 10]) // should yield 14

Your task!



About this Course

What & Why

Examples & Different Algorithms

Different Solution Approaches: Recursion, 
Dynamic Programming, Greedy 

Algorithms

A Solid Foundation & Plan



Course Outline

Basics & Time Complexity

Math Algorithms

Recursion & Dynamic Programming

Search Algorithms

Sorting Algorithms

Space Complexity

Sets (Arrays) Algorithms

More Complex Algorithms & A 
“Blueprint”


