]CADE

O\ ((items

/You got a list of items, where every item . .
; {id:
has a value and a weight. You got a bag (id:

that holds a maximum weight of X. o)

1

Write a program that maximizes the
value of the items you put into the bag
whilst ensuring that you don’t exceed

\ the maximum weight. / Qag = [‘a’, ‘c’] // solution /

Value: 13
Weight: 6 (< 8)

maxWeight 8

This is being asked to check your problem-solving skills.

An Algorithm

A[sequence of steps](instructions) to solve o[cleorly defined problem]

A 4

(")

The same steps always lead to the
same solution of a problem (given
the same inputs)!

N\ J

As a programmer, you need to be able to
solve problems (efficiently)!

Minimum amount of code?

Best performance?

Least memory usage?

Personal preference?

]CADE

/;unction sumUp(n) {
let result = 0;

result += 1;

}

return result;

\J

for (let i = 1; i <= nj; i++) {

~

/ _ 100 1,000 10,000

/?Wne

-

_ 100 1,000 10,000

/IhneorTHne O(n)

‘ Constant Time JROIEN

n / \Cubic Time

\

Big O Notation

]CADE

/;unct1on sumUp(n) { ‘\
let result = 0;
for (let i = 1; 1 <= n; i++) {
result += 1;

}

return result;

\J J

]CADE

/flrlll(‘-tion_sumup_(_n).__{ _______________ \

(
'return result;

N v

]CADE

4)

fupction sumUp(n) {
return (n / 2) x (n + 1);

}\

\' 100

1,000

10,000

Define the function

Find the fastest
growing term

Remove the
coefficient

S

\' 100

1,000

10,000

n

Define the function

J

Find the fastest
growing term

Remove the
coefficient

n (number of input) has no effect

on the time the algorithm takes
.

e

Execution time grows
logarithmically with n
\

-
Execution time grows linearly

with n
\,

p
Execution time grows

kquqdratically with n

p
Execution time grows

exponentially with n

\.

-

~

Write an algorithm that takes an array of numbers as input and

o

calculates the sum of those numbers.

Define the Time Complexity of that algorithm and determine
what the lowest possible Time Complexity is for this problem.

v

(

function sumNumbers(numbers)[{ 22?2 }

sumNumbers([1, 3, 10]) // should yield 14

What & Why

Examples & Different Algorithms

(" Different Solution Approaches: Recursion, b
Dynamic Programming, Greedy
Algorithms

A Solid Foundation & Plan

Basics & Time Complexity

v

!

Sorting Algorithms

Math Algorithms

!

!

Space Complexity

Recursion & Dynamic Programming

!

!

Sets (Arrays) Algorithms

Search Algorithms

!

More Complex Algorithms & A
“Blueprint”

