

MOLE CALCULATIONS

Avogadro's Constant = 6.02 x 10²³ atoms or molecules = 1 mole

MOLAR GAS CONSTANT

1 mole of ANY gas occupies 24.0 dm³ at room temperature & pressure

IDEAL GAS EQUATION

\mathbf{P} = Pressure (pa)	$\mathbf{V} = \text{volume} (\text{m}^3)$	n = no. of moles
R = Gas Consta	ant (8.314 J.K ⁻¹ .mol ⁻¹)	T = Temperature (K)

$$PV = nRT$$

P = <u>nRT</u>	V = <u>nRT</u>	n = <u>PV</u>	T = <u>PV</u>
V	Р	RT	nR
For changes in conditions:	\underline{P}_1V_1 =	P_2V_2	
	T 1	T ₂	

MASS SPECTROSCOPY

Relative Atomic Mass = $\frac{(\text{mass isotope 1 x abundance}) + (\text{mass isotope 2 x abundance}) + ...}{(Ar)}$

OTHER EQUATIONS

% by mass = <u>mass of element in 1 mole</u> Mr

Empirical formula = $\underline{M1}$: $\underline{M2}$: $\underline{M3}$ Mr1 : $\underline{Mr2}$: $\underline{M3}$ Where M1, M2 etc is the mass or % composition of element 1, 2 etc

then divide each by the smallest number to give empirical formula

ENTHALPY

 $\label{eq:Q} \begin{array}{l} \mbox{Q} = \mbox{energy transferred (J)} \\ \mbox{c} = \mbox{specific heat capacity (J.K^{-1}.mol^{-1})} \end{array}$

 $\label{eq:m} \begin{array}{l} m = mass \mbox{ of solution (g)} \\ \bigtriangleup T = \mbox{ change in temperature (°C \mbox{ or } K)} \end{array}$

$$\triangle \mathbf{H} = \mathbf{Q}$$

Don't forget to add a sign for $\triangle H!$

Divide by 1000 for kJ.mol⁻¹

\triangle H reaction = \sum reactant mean bond enthalpies - \sum product mean bond enthalpies

(kJ.mol⁻¹)

(kJ.mol⁻¹)

 nol^{-1})

(kJ.mol⁻¹)

EQUILIBRIA

 $aA + bB \rightleftharpoons cC + dD$

$$Kc = \begin{bmatrix} C \end{bmatrix}^{c} \begin{bmatrix} D \end{bmatrix}^{d}$$
$$\begin{bmatrix} A \end{bmatrix}^{a} \begin{bmatrix} B \end{bmatrix}^{b}$$

Where: [A] = concentration (mol.dm⁻³) a = no. of moles from equation

COMMON IONS

POSITIVE

NEGATIVE

GROUP 1 = +	GROUP 7 = -
GROUP 2 = 2+	GROUP 6 = 2-
H⁺	GROUP 5 = 3-
Ag⁺	
Zn ²⁺	
Pb ²⁺	
Al ³⁺	

(Transition metals are variable)

e.g. Fe²⁺, Fe³⁺

MOLECULAR IONS

NH₄⁺ ammonium

 H_3O^+ hydronium **OH**⁻ hydroxide CO3²⁻

carbonate

NO₃⁻ nitrate SO4²⁻

sulfate

CN⁻ cyanide PO4³⁻ phosphate

ACIDS & BASES

ACIDS

BASES

hydrochloric acid HCI HNO₃ nitric acid sulphuric acid H_2SO_4 H₃PO₄ phosphoric acid CH₃COOH ethanoic acid

NaOH KOH Ca(OH)₂ CuO

sodium hydroxide potassium hydroxide calcium hydroxide copper (II) oxide

COMMON OXIDATION STATES

NEGATIVE POSITIVE GROUP 1 = +IF = -IGROUP $2 = + \parallel$ O = -IIH = +IC| = -|Br = -IAq = +IMost common oxidation Zn = +II| = -| states, but may be positive Pb = +II or +IVN = -IIIwhen covalently bonded to more highly electronegative AI = + IIIS = -IIelements. i.e. F or O (Transition metals are variable) P = -III $Fe = + \parallel or + \parallel \parallel$ Cu = +II (sometimes +I)C = + || or + |V|

GROUP 1 SALTS: ALL SOLUBLE

NITRATE SALTS = ALL SOLUBLE

GROUP 2 SALTS: HYDROXIDES INCREASE IN SOLUBILITY DOWN THE GROUP SULFATES DECREASE IN SOLUBILITY DOWN THE GROUP CARBONATES ARE NOT SOLUBLE

Ag SALTS: ALL INSOLUBLE EXCEPT AgNO3

Pb SALTS ALL INSOLUBLE EXCEPT Pb(NO₃)₂

GROUP 7 SALTS: ALL SOLUBLE EXCEPT AgX and PbX₂

CO3 SALTS: ALL INSOLUBLE EXEPT GROUP 1

No.	Practical	Detail	Done?
1	Moles Determination	Use apparatus to record the mass and volume of a gas	
2	Perform a simple acid-base titration	Use titration to: - Determine the concentration of an acid - Determine the molar mass of an acid - Identify and unknown carbonate	
3	Measure Enthalpy Change	Use a calorimeter to experimentally determine the energy released by: - A neutralisation reaction - A combustion reaction	
4	Identify Unknown Inorganic Ions in Solution	Use chemical tests to identify Group 2, Group 7, OH ⁻ , CO3 ²⁻ and SO4 ²⁻ ions in solution	
5	Synthesis of an Organic Liquid	Synthesis of a haloalkane (Reflux & Distillation)	
7	Testing for organic functional groups	Use chemical tests to identify a carboxylic acid, an alcohol and an aldehyde.	
9	Rates of Reaction	Using the "continuous rate monitoring" method	

THERMODYNAMICS

$$\Delta \mathbf{H}^{\Theta}_{\text{solution}} = \Delta \mathbf{H}^{\Theta}_{\text{latt diss}} + \sum \Delta \mathbf{H}^{\Theta}_{\text{hydration}}$$
(ENDOTHERMIC) (EXOTHERMIC)

$\triangle \mathbf{G} = \angle$	H - T △S
---------------------------------	-----------------

$$\mathsf{T} = \underline{\triangle \mathsf{H}}$$

$$\triangle \mathbf{G} = - \triangle \mathbf{S} \mathbf{T} + \triangle \mathbf{H}$$

(kJ.mol⁻¹)

Always divide \triangle S by 1000 to match your units!

- When calculating the temperature at which a reaction becomes / ceases being feasible
- For the $\triangle G$ Vs T Graph! Equivalent to: y = mx + c

RATE EQUATIONS & ARRHENIUS

$$Rate = k [A]^{order} [B]^{order}$$

$$(mol.dm^{-3}.s^{-1})$$

$$K = \frac{Rate}{[A]^{order} [B]^{order}}$$

$$K = A e^{\left(\frac{-Ea}{RT}\right)} OR \qquad lnK = \left(\frac{-Ea}{RT}\right) + lnA \qquad OR \qquad lnK = \frac{-Ea}{R} \times \frac{1}{T} + lnA$$

$$Standard Arrhenius$$

$$(given in data booklet)$$

$$Rate = k [A]^{order} [B]^{order}$$

$$Rate = \frac{Rate}{[A]^{order} [B]^{order}}$$

ELECTROCHEMISTRY

 $\mathsf{EMF} = \mathsf{Most} \; \mathsf{Positive} \; \mathsf{E}^{\circ} \; \text{-} \; \mathsf{Most} \; \mathsf{Negative} \; \mathsf{E}^{\circ}$

OR

EMF = E° Cell being Reduced - E° Cell being Oxidised

ACIDS & BASES

 $pH = -log [H^+]$ and $[H^+] = 10^{-pH}$

 $K\alpha = \underline{[H^+]} \underline{[X^-]}$ [HX]

 $\mathsf{K}\mathsf{w} = [\mathsf{H}^+] [\mathsf{O}\mathsf{H}^-]$

Kw = 1.00 x 10⁻¹⁴ mol².dm⁻⁶ at 298K (given in data booklet)

COMMON OXIDATION STATES

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
+111	+IV	+11, +111 +1V, +V	+II, +III +VI	+II, +III +IV, +VI +VII	+11, +111	+11, +111	+11	+1, +11	+11

COMMON COMPLEX COLOURS

	+H2O	+ limited $OH^{-}_{(aq)}$ or $NH_{3(aq)}$	+ Excess OH (aq)	+ Excess NH _{3(aq)}	+ conc. HCI _(aq)	
	[Fe(H ₂ O) ₆] ²⁺ (aq)	[Fe(H ₂ O) ₄ (OH) ₂] _(s)		NVR	NVR	
Iron II	GREEN SOLUTION	GREEN PRECIPITATE (may oxidise to brown)	NVR			
	[Fe(H ₂ O) ₆] ³⁺ (aq)	[Fe(H ₂ O) ₃ (OH) ₃] _(s)			FeCl ₄	
Iron III	YELLOW SOLUTION	BROWN PRECIPITATE	NVR	NVR	YELLOW SOLUTION	
Chromium	[Cr(H ₂ O) ₆] ³⁺ (aq)	[Cr(H ₂ O) ₃ (OH) ₃] _(s)	[Cr(OH) ₆] ³⁻ (aq)	[Cr(NH ₃) ₆] ³⁺ (aq)		
	*VIOLET SOLUTION	GREY/GREEN PRECIPITATE	green Solution	purple Solution	NVR	
Copper	[Cu(H ₂ O) ₆] ²⁺ (aq)	[Cu(H ₂ O) ₄ (OH) ₂] _(s)		[Cu(H ₂ O) ₂ (NH ₃) ₄] ²⁺ (aq)	CuCl4 ²⁻	
	LIGHT BLUE SOLUTION	BLUE PRECIPITATE	NVR	ROYAL BLUE SOLUTION	YELLOW / GREEN SOLUTION	
Manganese	[Mn(H ₂ O) ₆] ²⁺ (aq)	[Mn(H ₂ O) ₄ (OH) ₂] _(s)		NVR		
	PALE PINK SOLUTION	LIGHT BROWN PRECIPITATE	NVR		NVR	

* Officially violet in colour, but is green when produced from the oxidation of alcohols using acidified potassium dichromate

No.	Practical	Detail	Done?
6	Preparation and purification of an organic solid	Using reflux, reduced pressure filtration, distillation & thin layer chromatography	
8	Set up an electrochemical cell	Set up an electrochemical cell and measure EMF	
10	Rates: Initial Rates Method	Use of the initial rates method to determine the rate of reaction	
11	pH Curve	Investigate how pH changes when a weak acid reacts with a strong base	
12	Research Skills	Apply investigative approaches and methods to practical work and use secondary sources of information	