Question	Marking guidance	Mark	AO	Comments
04.1	$\begin{aligned} & \text { Bonds broken }=2(\mathrm{C}=\mathrm{O})+3(\mathrm{H}-\mathrm{H})=2 \times 743+3 \times \mathrm{H}-\mathrm{H} \\ & \text { Bonds formed }=3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+3(\mathrm{O}-\mathrm{H})=3 \times 412+360+3 \times 463 \\ & -49=[2 \times 743+3 \times(\mathrm{H}-\mathrm{H})]-[3 \times 412+360+3 \times 463] \\ & 3(\mathrm{H}-\mathrm{H})=-49-2 \times 743+[3 \times 412+360+3 \times 463]=1450 \\ & \mathrm{H}-\mathrm{H}=483\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	1	AO1b AO1b A01b	Both required Both required Allow 483.3(3)
04.2	Mean bond enthalpies are not the same as the actual bond enthalpies in CO_{2} (and/or methanol and/or water)	1	AO1b	
04.3	The carbon dioxide (produced on burning methanol) is used up in this reaction	1	AO3 1b	
04.4	4 mol of gas form 2 mol At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure This increases the yield of methanol	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { AO2f } \\ \text { AO3 1b } \\ \text { AO3 1b } \end{gathered}$	
04.5	Impurities (or sulfur compounds) block the active sites	1	AO1b	Allow catalyst poisoned

04.6	Stage 1: moles of components in the equilibrium mixture	1	AO2f	Extended response question
	$\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$			
	Initial moles 1.0 3.0 0 0			
	Eqm $(1-0.86)$ $(3-3 \times 0.86)$ 0.86 0.86 moles $=0.14$ $=0.42$			
	Stage 2: Partial pressure calculations			
	Total moles of gas $=2.28$	1	AO2f	
	Partial pressures $=$ mol fraction $\times \mathrm{p}_{\text {total }}$			
	$\begin{aligned} & p_{\mathrm{cO} 2}=\mathrm{mol} \text { fraction } \times \mathrm{p}_{\text {total }}=0.14 \times 500 / 2.28=30.7 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{H} 2}=\text { mol fraction } \times \mathrm{p}_{\text {total }}=0.42 \times 500 / 2.28=92.1 \mathrm{kPa} \end{aligned}$	1	AO2f	M 3 is for partial pressures of both reactants
				Alternative M3 = $\begin{aligned} & \mathrm{pp}_{\mathrm{co2}}=0.0614 \times 500 \\ & \mathrm{pp}_{\mathrm{H} 2}=0.1842 \times 500 \end{aligned}$
	$\begin{aligned} & \mathrm{p}_{\mathrm{CH} 3 \mathrm{OH}}=\text { mol fraction } \times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa} \\ & \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}=\text { mol fraction } \times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa} \end{aligned}$	1	AO2f	M4 is for partial pressures of both products Alternative M4 =
	Stage 3: Equilibrium constant calculation $K_{\mathrm{p}}=\mathrm{p}_{\mathrm{CH} 3 \mathrm{OH}} \times \mathrm{p}_{\mathrm{H} 2 \mathrm{O}}, \mathrm{p}_{\mathrm{CO} 2} \times\left(\mathrm{p}_{\mathrm{H} 2}\right)^{3}$	1	AO2f	$\begin{aligned} & \mathrm{pp}_{\mathrm{CH} 3 \mathrm{OH}}=0.3772 \times 500 \\ & \mathrm{pp}_{\mathrm{H} 2 \mathrm{O}}=0.3772 \times 500 \end{aligned}$
	Hence $K_{p}=188.6 \times 188.6 / 30.7 \times(92.1)^{3}=1.483 \times 10^{-3}=1.5 \times 10^{-3}$	1	AO1b	Answer must be to 2 significant figures
	Units $=\underline{k P a}^{-2}$	1	AO2f	

