Question	Marking guidance	Mark	AO	Comments
04.1	Bonds broken = $2(C=O) + 3(H-H) = 2 \times 743 + 3 \times H-H$ Bonds formed = $3(C-H) + (C-O) + 3(O-H) = 3 \times 412 + 360 + 3 \times 463$ $-49 = [2 \times 743 + 3 \times (H-H)] - [3 \times 412 + 360 + 3 \times 463]$	1	AO1b	Both required
	$3(H-H) = -49 - 2 \times 743 + [3 \times 412 + 360 + 3 \times 463] = 1450$ H-H = 483 (kJ mol ⁻¹)	1 1	AO1b AO1b	Both required Allow 483.3(3)
04.2	Mean bond enthalpies are not the same as the actual bond enthalpies in $\rm CO_2$ (and/or methanol and/or water)	1	AO1b	
04.3	The carbon dioxide (produced on burning methanol) is used up in this reaction	1	AO3 1b	
04.4	4 mol of gas form 2 mol At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure This increases the yield of methanol	1 1 1	AO2f AO3 1b AO3 1b	
04.5	Impurities (or sulfur compounds) block the active sites	1	AO1b	Allow catalyst poisoned

1		1	1	
04.6	Stage 1: moles of components in the equilibrium mixture			Extended response question
	$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$			
	Initial 1.0 3.0 0 0 moles			
	Eqm $(1-0.86)$ $(3-3\times0.86)$ 0.86 0.86 moles = 0.14 = 0.42	1	AO2f	
	Stage 2: Partial pressure calculations			
	Total moles of gas = 2.28	1	AO2f	
	Partial pressures = mol fraction × p _{total}			
	p_{CO2} = mol fraction × p_{total} = 0.14 × 500/2.28 = 30.7 kPa p_{H2} = mol fraction × p_{total} = 0.42 × 500/2.28 = 92.1 kPa	1	AO2f	M3 is for partial pressures of both reactants Alternative M3 = $pp_{CO2} = 0.0614 \times 500$ $pp_{H2} = 0.1842 \times 500$
	p_{CH3OH} = mol fraction × p_{total} = 0.86 × 500/2.28 = 188.6 kPa p_{H2O} = mol fraction × p_{total} = 0.86 × 500/2.28 = 188.6 kPa	1	AO2f	M4 is for partial pressures of both products Alternative M4 = $pp_{CH3OH} = 0.3772 \times 500$
	Stage 3: Equilibrium constant calculation			$pp_{H2O} = 0.3772 \times 500$
	$\mathbf{n}_{p} = \mathbf{p}_{CH3OH} \times \mathbf{p}_{H2O} / \mathbf{p}_{CO2} \times (\mathbf{p}_{H2})^{T}$	1	AO2f	
	Hence $K_p = 188.6 \times 188.6 / 30.7 \times (92.1)^3 = 1.483 \times 10^{-3} = 1.5 \times 10^{-3}$	1	AO1b	Answer must be to 2 significant figures
	Units = $\underline{kPa}^{\underline{-2}}$	1	AO2f	