Sequences Essential Practice

Skill: \quad Finite geometric sequences

Questions

Attempt these questions independently showing full and clear solutions. Check each answer as you go.

1. A geometric progression has first term 5 and common ratio 3 . Find the sum of the first 9 terms.
2. Find the sum, as far as the term indicated in the brackets, of each of the following geometric progressions:
(a) $3-6+12-\ldots$
[the sum up to the $11^{\text {th }}$ term]
(b) $5+10+20+\ldots$
[the sum up to the $8^{\text {th }}$ term]
3. Find the sum of the terms in each of the following geometric series [Hint: determining the number of terms in the sequence is essential]:
(a) $3+6+12+\ldots+384$
(b) $36+12+4+\cdots+\frac{4}{27}$
4. Find the sum of the terms in geometric series:

$$
4-12+36-\ldots-972
$$

5. A geometric progression has a $1^{\text {st }}$ term 1 and a common ratio $\frac{1}{4}$. Find the sum of the first 4 terms and show that the nth term is given by $4^{(1-n)}$.
6. A geometric progression has common ratio -3. Given that the sum of the first nine terms of the progression is 703, find the first term.
7. A geometric progression is such that the sum of the first eight terms is five times the sum of the first four terms. Determine the value of the common ratio r, given that $r>1$.
8. Find the first term of the geometric series in which the common ratio is 2 and the sum of the first ten terms is 93 .

9．A geometric progression has first term 3 and common ratio 0．4．Given that the sum of the first n terms is 4.97952 ，show that n satisfies the equation

$$
0.4^{n}=0.004096
$$

Use logarithms to find n ．
10．Determine how many terms of the geometric series

$$
1-2+4-8+\cdots
$$

should be taken in order that the total should equal 10923.

11．Find the least number of terms of the geometric progression

$$
40+60+90+\cdots
$$

which must be taken for the sum to exceed 10000 ．

12．A savings plan requires a payment of $£ 30$ on a year on the same date for 18 years．All savings earn an interest at a rate of 5% per annum．

Show that，after 18 complete years，the first payment has increased in value to

$$
£ 30 \times 1.05^{18}
$$

Show that the total value，after 18 complete years of all 18 payments is

$$
£ \frac{30 \times 1.05 \times\left(1.05^{18}-1\right)}{1.05-1}
$$

Evaluate the total to the nearest penny．

13．Show that the sum of the geometric series

$$
x+x^{3}+x^{5}+\cdots+x^{15}
$$

is

$$
x\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)
$$

