Question	Scheme	Marks	AOs
6 (a)	$R=\sqrt{5}$	B1	1.1b
	$\tan \alpha=2 \Rightarrow \alpha=\ldots$	M1	1.1b
	$\alpha=1.107$	A1	1.1b
		(3)	
	$\theta=5+\sqrt{5} \sin \left(\frac{\pi t}{12}+1.107-3\right)$		
(b)	$(5+\sqrt{5}){ }^{\circ} \mathrm{C}$ or awrt $7.24{ }^{\circ} \mathrm{C}$	B1ft	2.2a
		(1)	
(c)	$\frac{\pi t}{12}+1.107-3=\frac{\pi}{2} \Rightarrow t=$	M1	3.1b
	$t=\operatorname{awrt} 13.2$	A1	1.1b
	Either 13:14 or 1:14 pm or 13 hours 14 minutes after midnight.	A1	3.2a
		(3)	
(7 marks)			
Notes:			

(a)

B1: $R=\sqrt{5}$ only.
M1: Proceeds to a value of α from $\tan \alpha= \pm 2, \tan \alpha= \pm \frac{1}{2}, \sin \alpha= \pm \frac{2}{\| R "}$ OR $\cos \alpha= \pm \frac{1}{{ }^{R} R "}$
It is implied by either awrt 1.11 (radians) or 63.4 (degrees)
A1: $\alpha=$ awrt 1.107
(b)

B1ft: Deduces that the maximum temperature is $(5+\sqrt{5})^{\circ} \mathrm{C}$ or awrt $7.24^{\circ} \mathrm{C}$ Remember to isw Condone a lack of units. Follow through on their value of R so allow $(5+" R "){ }^{\circ} \mathrm{C}$
(c)

M1: An complete strategy to find t from $\frac{\pi t}{12} \pm 1.107-3=\frac{\pi}{2}$.
Follow through on their 1.107 but the angle must be in radians.
It is possible via degrees but only using $15 t \pm 63.4-171.9=90$
A1: awrt $t=13.2$
A1: The question asks for the time of day so accept either $13: 14,1: 14 \mathrm{pm}, 13$ hours 14 minutes after midnight, 13 h 14 , or 1 hour 14 minutes after midday. If in doubt use review

It is possible to attempt parts (b) and (c) via differentiation but it is unlikely to yield correct results. $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\pi}{12} \cos \left(\frac{\pi t}{12}-3\right)-\frac{2 \pi}{12} \sin \left(\frac{\pi t}{12}-3\right)=0 \Rightarrow \tan \left(\frac{\pi t}{12}-3\right)=\frac{1}{2} \Rightarrow t=13.23=13: 14$ scores M1 A1 A1 $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\cos \left(\frac{\pi t}{12}-3\right)-2 \sin \left(\frac{\pi t}{12}-3\right)=0 \Rightarrow \tan \left(\frac{\pi t}{12}-3\right)=\frac{1}{2} \Rightarrow t=13.23=13: 14$ they can score M1 A0 A1 (SC)
A value of $t=1.23$ implies the minimum value has been found and therefore incorrect method M0.

