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 Henri Loubergé

 Abstract

 Natural catastrophes attract regularly the media attention and have become a
 source of public concern. From a financial viewpoint, they represent idiosyn-
 cratic risks, diversifiable at the world level. But for various reasons, reinsur-

 ance markets are unable to cope with this risk completely. Insurance-linked
 securities, such as catastrophe (cat) bonds, have been issued to complete the
 international risk transfer process, but their development is disappointing so
 far. This article argues that downside risk aversion and ambiguity aversion
 explain their limited success. Hybrid cat bonds, combining the transfer of cat
 risk with protection against a stock market crash, are proposed to complete
 the market. The article shows that replacing simple cat bonds with hybrid
 cat bonds would lead to an increase in market volume.

 Introduction

 Natural catastrophes such as hurricanes, floods, earthquakes, and tsunamis attract
 regularly the attention of media. Some of them lead to huge human losses, without
 much impact in terms of economic losses: e.g., 300,000 victims from floods in Novem-
 ber 1970 in Bangladesh, or 138,000 victims from cyclone Gorky in the same country in
 1991,1 but insignificant or low insured losses ($0.3bio for cyclone Gorky). Others lead
 to huge economic and insurance losses, without many victims: e.g., $22bio insured
 losses for Hurricane Andrew in Florida and Bahamas in 1992, but "only" 43 victims.
 Still others - more recently - emerge in statistics with simultaneously huge economic
 and insurance losses, and huge death tolls: e.g., the December 2004 tsunami in the
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 Indian Ocean (220,000 victims, $14bio economic losses, and $2bio insured losses),
 or Hurricane Katrina in August 2005 in Louisiana, Mississippi, and Alabama (1,300
 victims, an estimated $125bio economic losses, and $45bio insured losses2).

 During the last decade, catastrophe-linked securities were very often presented as the
 appropriate tool to deal with the financial consequences of natural catastrophes, even
 in the case of poor developing countries (see Freeman, 2001). Catastrophe (cat) risk
 securitization has occurred using different financial instruments: cat options, such as
 those proposed by the Chicago Board of Trade (CBOT) for some years (see Cummins
 and Geman, 1995; Hoyt and McCullough, 1999), cat equity puts (see Doherty, 2000)
 and cat bonds (see Loubergé, Kellezi, and Gilli, 1999; Cummins, Lalonde, and Phillips,
 2004; Nell and Richter, 2004). Cat bonds have met the most success. However, the
 success so far has not been as high as one could expect when they first appeared in
 1996. The market remained stagnant until 2005 with a few issues per year (a maximum
 of 10 in 1999 and 2005) and a total of $5bio of capital outstanding at the end of 2005- far
 below the $66bio of insured losses for Hurricane Katrina that same year. In 2006 and
 2007, the market experienced its takeoff, with 20 issues in 2006 for a total of $4.69bio
 and 27 in 2007 for a total of $7bio. At year-end 2007, outstanding capital had raised to
 $13.8bio, nearly three times the 2005 figure (see Guy Carpenter, 2008). This takeoff is
 welcome, as it tends to show that the securitization of catastrophe risk is well on its
 way, but it is also fair to say that the years 2006 and 2007 provided favorable conditions
 for market growth. The year 2006 followed a record year 2005 for natural catastrophe
 losses: a contraction in supply and more stringent conditions on the reinsurance
 market provided incentives for cedents to turn to cat bond issues. After low losses in
 2006, the market could have slowed down in 2007, but the "subprime crisis" and its
 impact on the corporate bonds and credit derivatives market led many investors to
 look for alternative and noncorrelated investment opportunities. As a result, the cat
 bond market experienced an inflow of funds leading to softer conditions for cat bond
 sponsors (see Guy Carpenter, 2008). Even if this long-awaited takeoff in the market
 would be confirmed in the coming years, there is still a long way to go to reach an
 outstanding capital comparable to the $66bio in Katrina losses. Note, in addition, that
 total outstanding capital, measured by the total bond principal, does not represent the
 actual amount available to the cat bond sponsor for payment of losses: this amount
 is generally limited to coupons and part of the principal.

 Natural catastrophes represent systematic risks at the regional or national level, but
 their economic impact should be diversifiable at the world level using already avail-
 able international reinsurance markets, without any need to issue cat-linked securities.
 However, these markets are not as efficient as could be expected. The recent experi-
 ence is characterized by chronic shortage of capacity, widely fluctuating prices, and
 reinsurers' combined ratios far in excess of 100% (see Sigma, 2002). Once catastrophes
 have occurred, some participants are pulled out of the market, and risks are not easily
 transferred until new capital flows in. As a result, major natural catastrophes in de-
 veloped markets are seriously underinsured (see Sigma, 2007). Different arguments
 have been provided to explain this situation. Some invoke parameter risk (severity
 and frequency risk), which would prevent more capital to be invested in the cat rein-
 surance business. Indeed, the severity of natural catastrophes tends to increase due to

 2See Moreau (2005).
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 concentration of values in exposed areas, such as ocean coasts and earthquake-prone
 regions,3 and the frequency of storms and hurricanes seems to have increased as well
 in the recent past, maybe due to global warming (although long-term fluctuations in
 frequency cannot yet be excluded) (see Sigma, 2005).

 In addition to this uncertainty about the severity and frequency parameters, one can
 observe that the demand for cat insurance coverage is concentrated in a few exposed
 high-income areas of the world: California, Florida, Texas, Japan, and Western Europe.
 According to Moreau (2005), 80% of world insured losses due to natural catastrophes
 are concentrated in the United States. (In 2004, this share was only 68%, due to
 the South Asia tsunami and other catastrophes in Asia absorbing 25% of losses.)
 In contrast, the North American cat insurance premium income amounts to 40% of
 total. An adverse selection process is taking place here, with bad risks crowding good
 risks out of the market. This questions the solidity of reinsurers operating in this
 market segment. In the long run, they will have to leave the market or be exposed
 to bankruptcy when a major event occurs in a high exposure area (see Cummins,
 Doherty, and Lo, 2002).

 Thus, although the risk of losses from natural catastrophes is in principle diversifi-
 able internationally using reinsurance, the uncertainties surrounding the long-term
 evolution of this risk, its concentration in some regions of the world, and the even
 greater concentration of demand for coverage in a subset of the latter regions has
 led to the emergence of catastrophe-linked securities, as possible substitutes for rein-
 surance. Cat risk securitization presents a number of advantages. First, it relies on
 the wide international financial market to spread the risk globally (see Kielholz and
 Durrer, 1997). Second, securitization is a vector of risk disaggregation. Capital is
 specifically and directly used to support the transfer of cat risk, instead of being al-
 located to reinsurers involved in a large spectrum of insurance and financial risks.
 Third, securitization allows optimal risk sharing among market participants, instead
 of uniform risk spreading if a worldwide mandatory system of catastrophe insurance
 was eventually organized. If the risk is truly diversifiable globally, i.e., if cat losses are
 uncorrelated with world wealth, its assumption should not return a risk premium.
 If, however, part of the risk is undiversifiable, e.g., parameter risk leading to possible
 mispricing of the cat-linked securities, a risk premium will emerge and the risk will
 be optimally shared among market participants, in proportion to their risk tolerance.

 Given these advantages, why were developments in the markets for cat-linked se-
 curities relatively disappointing so far? The modest market increase is all the more
 surprising that financial returns from cat bonds were better than initially expected.

 3 As explained in Sigma (2005, p. 13), "The example of Florida is a particularly good illustration
 of this trend: the number of residents in this state increased by 70% between 1980 and 2001. In

 the same period, the state's gross domestic product soared by 130%. In 2004, three hurricanes
 in succession touched land in Florida: Charley, Frances and Jeanne; a fourth, Ivan, also passed
 over Florida after making landfall in Alabama. Because of the high concentration of assets, the
 state of Florida alone suffered insured property damage of $19bn." (Note that the combined
 total insured losses of these four hurricanes, $28bio, exceed the record losses from hurricane
 Andrew in 1992, $22bio.)
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 In spite of the uncorrelation with market risk,4 and their fully collateralized nature,
 most of these bonds are rated BB by Standard & Poor's and offer large spreads over
 LIBOR, in particular those covering multiple perils. Moreover, until Katrina in 2005,
 losses on principal had never occurred, at least on publicly disclosed cat bond issues.5
 Nevertheless, cat bonds do not substitute for reinsurance. They are used to complete
 the market, to fill a gap in market niches, mainly the high-severity, low-frequency
 layer where traditional reinsurance is unattractive to cédants for two reasons: high
 premium rates and substantial counterpart credit risk.6

 Several explanations were already proposed. First, it is often remarked that cat bonds
 are new exotic securities and that investors need to become familiar with the concept.
 This argument is unconvincing. Cat bonds have been issued for 10 years now and
 more exotic securities, such as those used to transfer credit risks, have had a huge
 success. Products, such as credit default swaps, credit spread options and total-rate-
 of-return swaps, have allowed firms and financial institutions to more effectively deal
 with credit risks - even, in some cases, with excessive enthusiasm, as the "subprime
 crisis" has shown. For the same reason, the argument that financial institutions, such
 as pension funds, are not allowed to invest in derivative instruments, such as cat
 bonds, is unconvincing.

 Second, parameter uncertainty, as noted before, may be a reason why the market
 for cat bonds has difficulties to takeoff. But parameter uncertainty is not limited
 to cat risk. It also affects the financial market and is a potential source of market
 incompleteness (see Mukerji and Talion, 2001). In reality, parameter uncertainty and
 ambiguity aversion did not prevent the stock market volumes to soar over the past two
 decades. Thus, parameter uncertainty, considered in isolation, is unlikely to explain
 the stagnation in the annual number and volume of cat bond issues.

 Moral hazard and basis risk are other possible reasons for the low volume of cat bonds,
 but both must be relevant to explain the lack of real takeoff in the market. Moral hazard
 may be relevant when the activation of the cat bond is triggered by the insurance

 4 According to calculations made by Bank Leu, the 5-year (2000-2005) correlations of a cat bond
 portfolio with stock market indices are low but not zero: 0.09 with the S&P 500, 0.15 with the DJ
 EuroStoxx 50, and 0.12 with the Swiss Market Index (see Graemiger Theler, 2005). In contrast,
 Hoyt and McCullough (1999) found zero correlations. But they investigated the correlation
 between the stock market and the PCS index used as a basis for cat options. As noted by
 Loubergé, Kellezi, and Gilli (1999), the call feature imbedded in cat bonds makes these secu-
 rities sensitive to interest rate risk. For this reason, their model predicts a nonzero correlation
 between cat bond returns and stock market returns, even if cat losses are uncorrelated with
 stock market returns.

 5See MMC Securities (2005). In spite of the high losses due to Florida hurricanes and Japanese
 typhoons in 2004, no cat bond was triggered by these events. However, a 2004 Japanese
 earthquake did activate an $85 million second event tranche part of a 2003 issue sponsored by
 Swiss Re. According to MMC securities, "The activation of a second event tranche indicates
 that the occurrence of the next qualifying event may trigger a loss to the tranche's principal"
 (P- 25).

 6The model presented by Nell and Richter (2004), combining reinsurance and cat bonds in an
 expected utility framework, obtains precisely this result: the cédant uses reinsurance for small
 losses and index-linked cat bonds for the higher layers of losses.
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 sponsor's record of claims due to a natural catastrophe. In this case, investors may
 be worried by the sponsor's incentive to inflate claims reported once a catastrophe
 has occurred. If moral hazard binds, the obvious response is to issue cat bonds based
 on an industry index of losses (such as a PCS index7), or on a parametric index,
 the mere occurrence of a catastrophic event with defined and observable parameter
 characteristics (wind speed and location of a hurricane, magnitude and location of an
 earthquake). This was the more common form of cat bond issues over the past years.
 In this case, moral hazard disappears, but basis risk emerges. The payout from the cat
 bond does not fully hedge the sponsor's actual cat losses (see Cummins, Lewis, and
 Phillips, 2002; Nell and Richter, 2004). Therefore, to explain the low volume of issues,
 both moral hazard and basis risk should be a severe problem. This is not excluded,
 but unlikely.

 Another possible reason motivates this article. It is the aversion to downside risk
 among investors, combined with parameter uncertainty. In particular, investors can
 show an aversion against the ambiguity on the effective dependency between the
 occurrence of a natural catastrophe and that of a market crash. Catastrophes convey
 a notion of dread. Their financial impact on insurance companies returns is easily
 associated with the impact of a market crash on stock portfolio returns. Although
 losses from natural catastrophes have been historically uncorrelated with financial
 market returns, it is not guaranteed that this absence of interaction will still hold
 in the future. A potential causality effect between an important catastrophe and a
 market crash is not so unrealistic. The terrorist attack on the World Trade Center on

 September 11, 2001, had simultaneous impact on the market for cat reinsurance and
 the stock market. More recently, the stock market reacted to the Katrina event. Not
 only insurance company stocks, but also oil stocks, dropped significantly - although
 no crash occurred. Similarly, potential rare disasters such as world wars, epidemics
 of diseases, and large-scale natural catastrophes are often invoked in the asset pricing
 literature to argue that a significant probability of a deep financial market downturn
 helps to solve the equity premium puzzle (see Barro, 2006; Rietz, 1988).

 This article argues that the volume of cat bond issues would likely increase if in-
 termediaries issued hybrid cat bonds, financial instruments combining a simple cat
 bond and a protection against a simultaneous drop in stock market prices. The latter
 could be conceived as a down-and-in digital put option on a market index, with the
 occurrence of the catastrophe as activating barrier. In this case, investors would be
 protected against downside risk. If a relevant catastrophe or a stock market crash
 occurred, the diversified investor would lose only part of her investment. If both hap-

 pened, the downside risk would be hedged by the activation of the put protection.
 Using the concept of zero-premium options, this put protection could be financed by
 the simultaneous issue of a up-and-in digital call option. This latter option would be
 activated if no natural catastrophe was recorded and the financial market experienced
 at the same time a sufficient increase in stock prices. In such a case, investors would
 gain on both sides of their investment and would be more prepared to pay a known
 amount, as determined in the call component of the hybrid transaction. One could
 argue that such hybrid structures can be replicated by the investors themselves, and

 7The claims indices calculated by Property Claims Services (PCS) were formerly used as un-
 derlyings for the CBOT cat options.

This content downloaded from 161.200.69.48 on Thu, 02 Nov 2017 06:39:32 UTC
All use subject to http://about.jstor.org/terms



 552 The Journal of Risk and Insurance

 therefore the current absence of protection against combined events should not have
 prevented investors from buying cat bonds. But several decades of developments in
 the financial market have shown that financial intermediation is useful in providing
 sophisticated structures to investors - even if the latter could have replicated these
 structures by constructing portfolios of primary assets and other available instru-
 ments, such as derivative securities. Hybrid cat bonds would simply represent an
 additional structured product in a wide population of such products.

 The model presented in the article uses the concept of convex risk measures to present
 a game involving three players: an insurer/reinsurer exposed to a risk of catastrophic
 loss, an investor already holding a diversified portfolio of investment, and a financial
 intermediary seeking to maximize the economic surplus from the cat bond transac-
 tion, under the risk measure constraints of the two other agents. The convex risk
 measures introduced by Follmer and Schied (2002b) are particularly well suited to
 a context of downside risk, as they provide an improvement with respect to the
 much used value at risk (denoted by V@R) concept - a nonconvex risk measure.
 More specifically, our model is based on the modified risk measures introduced by
 Barrieu and El Karoui (2003, 2005). These modified measures increase the tractability
 of convex risk measures when dealing with risk transfer issues for investors already
 holding a diversified portfolio of securities. In addition, a special class of convex risk
 measure, the entropie risk measure, allows a convenient link with expected utility
 theory, a familiar concept for financial economists.

 The "Framework and Notations" section presents the model and the risk measure
 concepts used throughout the article. In the "Analysis of the Simple Transaction"
 section, the base case of a simple cat bond transaction is developed. The "Analy-
 sis of the Hybrid Transaction" section introduces hybrid cat bonds and derives the
 optimal trading conditions for the three players concerned by the transactions: the
 insurer/reinsurer, the financial intermediary, and the investor. Finally, the "Impact
 of the Hybrid Component on the Volume of the Transaction" section analyzes the
 effect of introducing hybrid cat bonds on the volume of cat bond issues. Our main
 result shows that hybrid cat bonds provide more volume than simple cat bonds. They
 enlarge the class of insurance-linked securities and allow better diversification of cat
 risk in the financial market.

 Framework and Notations

 General Framework

 In a universe described by a probability space (£2, T, P), with P the prior probability
 measure, a given economic agent, typically an insurer or a reinsurer - agent A -
 is exposed to the occurrence of a natural catastrophe. If a catastrophe occurs, the
 amount of losses is denoted by X. This amount is supposed to be known in advance.
 The randomness comes from the occurrence of the catastrophe itself. The time horizon
 is T > 0 and the random event "occurrence of a catastrophe" is denoted by r. Hence,
 {r < T} denotes the occurrence of a natural catastrophe before time T, while {r >T}
 characterizes the situation where no catastrophe occurs.

 Agent A wants to issue a cat bond to hedge his exposure. In this study, we consider
 successively two different types of products for the potential investors and look at
 their impact on the volume of the possible transactions. In each case, different agents
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 are involved: agent A, the "issuer" or "sponsor"; agent C, the investor (possibly a
 hedge fund); and agent B, an intermediary between A and C, typically a special
 purpose vehicle (SPV) sponsored by an investment bank acting on behalf of agent A
 to issue the cat bond and playing an advisory role. Agent B is particular in the sense
 that his role is just to make the overall transaction feasible. He cannot retain any risk
 and acts as a pure intermediary. Such an agent may appear redundant, if not to help
 with legal constraint related to the issue. For his intermediation role, agent B may
 collect some servicing fees for the design and issue of the transaction.

 Remark 1: Note that, in actual practice, the SPV is also an intermediary between cat
 bond investors and the financial markets. In this capacity, an SPV usually performs a
 dual-risk transfer function. First, by investing the proceed from the cat bond issue (as
 well as the reinsurance premium paid by the insurer) in Treasury securities, it frees
 the whole arrangement from default risk. Second, by contracting an interest rate swap
 with a financial counterpart, it cleans the cat bond from interest rate risk. These two
 risk transfer functions are important in practice. They enhance the attractiveness of
 the cat bond. In our model, they do not play a role, given our simplifying assumptions.
 The insurer faces no default risk, as he receives the proceeds from the issue at time
 t = 0, and a possible default on the insurer's side is simply not considered. Interest
 rate risk is removed by assuming a zero-coupon cat bond and holding of the position
 until maturity T. We are thus able to concentrate on a different aspect related to cat
 bonds, namely, the downside risk.

 The First Model Is Based on a Simple Cat Bond. In this case, agent B buys the entire
 cat bond issue from agent A and transfers it to agent C. Two parameters characterize
 the cat bond: its price, representing the volume of the transaction,8 and its nominal
 amount, N. The latter is fully transferred by agent B. As far as the price is concerned,
 agent B pays a price n a to agent A to purchase the security and then receives a price
 nc from agent C. A very simple structure is considered: no coupons are paid, and the
 nominal amount N is paid at maturity T to the buyer (first agent B, then agent C) only
 if no catastrophe occurs between 0 and T. If a catastrophe occurs before T, nothing is
 paid and the cat bond return is zero.

 The Second Model Introduces a Hybrid Transaction. As for the simple transaction, agent
 B buys the entire cat bond from agent A with the previous characteristics. Agent
 B will then issue a hybrid product, which is bought by agent C. This structure has
 some optional features. Against a price nhc, agent C receives the prospect of nominal
 amount Nh if no catastrophe occurs before maturity T, and the prospect of a fixed
 amount H when both a financial market crash and a natural catastrophe occur before
 T. If, however, there is a market boom and no natural catastrophe before the maturity,

 agent C will pay this amount H to agent B, or equivalently will only receive Nh - H.
 More precisely, the hybrid structure received by agent C includes the purchase of a
 digital put, paying H if there is a natural catastrophe and a market crash, and the sale
 of a digital call paying H if there is no natural catastrophe and a market boom. The

 8The price represents the volume of capital flowing into the cat bond market.

This content downloaded from 161.200.69.48 on Thu, 02 Nov 2017 06:39:32 UTC
All use subject to http://about.jstor.org/terms



 554 The Journal of Risk and Insurance

 initial price of the put and that of the call coincide, and hence it simply remains the
 exchange of the contingent payoff at maturity. Since agent B cannot retain any risk
 in his book, he will transfer the payoff of the call option if exercised to the financial
 market.

 Note that the hybrid structure depends on the possibility for agent B to find such
 hybrid options on the market. This is an assumption we will make in this article. It
 can be easily relaxed by considering a call and a put written simply on the market
 index, without any reference to the occurrence of a natural catastrophe. Moreover,
 in this structure, the two options should have the same initial price. This puts a
 constraint on the reference market events. More precisely, what is meant by "crash"
 and "boom" is characterized by this condition on the market prices of the related
 options, as we will see in the "Analysis of the Hybrid Transaction" section. Note also
 that, for the sake of simplicity, we assume that all cash flows are capitalized up to T.

 Convex Risk Measures as a Choice Criterion

 In order to determine optimally the characteristics of both transactions, each agent
 needs to refer to a choice criterion. In this article, we consider convex risk measures.
 Such a framework is motivated by the fact that risk measures are becoming increas-
 ingly popular in both the financial and actuarial industry but also they enable a
 concise writing, facilitating interpretation as we will see in the following. Moreover,
 such a framework enables to take into account the aversion toward ambiguity of the
 different agents. Indeed, risk measures do take into account the model risk (or the pa-
 rameter uncertainty) by assessing the risk over a whole family of scenarios, weighted
 differently according to their likelihood, as underlined by the dual representation.

 Definition and General Comments. When assessing the risk related to a given position,
 a first natural approach is based on the distribution of the risky position itself. In this
 framework, the most classical measure of risk is simply the variance. However, it does
 not take into account the whole distribution's features (as asymmetry or skewness)
 and especially it does not focus on the "real" financial risk which is the downside risk.
 Therefore different methods have been developed to focus on the risk of losses: the
 most widely used (as it is recommended to bankers by many supervisory authorities)
 is the so-called V@R, based on quantiles for the lower tail of the distribution. More
 precisely, the V@R associated with the position ^ at a level e is defined as

 V®l?e(*) = inf{lfc:P(*+Jfc <0)<£}.

 The V@R corresponds to the minimal amount to be added to a given position to
 make it acceptable. Such a criterion has several key properties: it is decreasing in *I>;
 it satisfies the monetary property in the sense that it is translation invariant: Vm e
 R, V@Re(V + m) = V@Re(V) - m; and finally, it is positive homogeneous asVX>
 0, V@Re(k V) = A. V@R€(V). This last property reflects the linear impact of the size
 of the position on the risk measure.

 However, as noticed by Artzner et al. (1999), this criterion fails to meet a natural
 consistency requirement: it is not a convex risk measure while the convexity property
 translates the natural fact that diversification should not increase risk. In particular,
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 any convex combination of "admissible" risks should be "admissible." The absence
 of convexity of the V@R may lead to arbitrage opportunities inside the financial
 institution using such criterion as risk measure.

 Based on this logic, Artzner et al. (1999) have adopted a more general approach to
 risk measurement. Their article is seminal as it has initiated a systematic axiomatic
 approach to risk measurement. A coherent measure of risk should be convex and satisfy
 the three key properties of the V@R.

 More recently, the axiom of positive homogeneity has been discussed. Indeed, such
 a condition does not seem to be compatible with the notion of liquidity risk existing
 on the market as it implies that the size of the risky position has simply a linear
 impact on the risk measure. To tackle this shortcoming, Fôllmer and Schied (2002a, b)
 consider instead convex risk measures defined on A* a linear space of bounded functions
 including constant functions, as follows:

 Definition 1: The functional p is a convex risk measure // it satisfies the following
 properties:

 a) Convexity;
 b) Monotonicity;
 c) Translation invariance: Vm € R p(X + m) = p(X) - m.

 The Agents' Risk Assessment. The two main agents of this study assess their risk using
 a convex risk measure, respectively, denoted by p a and pc • For the sake of simplicity,
 after the presentation of the general problem, we will consider entropie risk measures9
 in order to derive explicit formulae for the different quantities involved. Denoting by
 Yi (>0), the risk tolerance coefficient of agent i (i = A, C), his entropie risk measure
 associated with the terminal investment payoff 4> is expressed as:

 A-(*) = wInE[exp(~*)]. (1)
 Note that due to the cash translation invariance property of the different risk measures,
 we do not need to introduce the agents' initial wealth as their impact will disappear
 in the different computations. Therefore, without any loss of generality, we fix them
 equal to 0.

 The entropie risk measure has the following dual representation:

 Pi (*) = sup (Eq (-*) - Yih (Q/P)) ,
 Q

 9Note that the entropie risk measure corresponds to the certainty equivalent associated with
 the exponential utility. In particular, the risk-tolerance coefficient in both frameworks coincide.
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 where h(Q/¥) is the relative entropy of Q with respect to the prior probability P,
 defined by

 Ep/^ln^Y if Q«F
 +00 otherwise.

 The model risk is fully taken into consideration here since the risk assessment is made
 over a whole class of possible probability measures or scenarios.

 The problem of agent B is different in the sense that he cannot retain any risk and
 therefore his role is the structuring and issuing of the securities (simple cat bonds and
 hybrid cat bonds). Therefore, as he is not really exposed to risk, he has no particular
 measure of risk. His problem (just as that of the investment bank sponsoring the whole
 transaction) is to generate enough servicing fees. For this reason, we will assume that
 agent B is risk neutral.

 Financial Investments on the Market and Market-Modified Risk Measures

 In this article, we also assume that the two agents have the possibility to invest on
 the financial markets to hedge and diversify their risk. We first present the possible
 hedging strategies and then look at the impact of such hedging instruments on the
 risk measures of the different agents.

 Hedging Portfolios and Investment Strategies. The financial market is represented by a
 set Vt of bounded terminal gains10 at time T, resulting from self-financing investment
 strategies with a null initial value. The key point is that all agents in the market agree
 on the initial value of every strategies. In other words, the market value at time
 0 of any strategy is null. In particular, an admissible strategy is associated with a
 derivative contract with bounded terminal payoff 4> only if its forward market price
 at time T, qm (4>), is a transaction price for all agents in the market. Then, 4> - qm (O)
 is the bounded terminal gain at time T and is an element of Vj. Typical example of
 admissible terminal gains are the terminal wealth associated with transactions based
 on options.

 Moreover, in order to have coherent transaction prices, we assume in the following
 that the market is arbitrage free. In our framework, this can be expressed by:

 3Q-P V£TeVT EQ(£T)<0.

 In particular, considering the financial assets, with a terminal payoff $ that can be
 sold and bought, such a condition is written as

 <7m(<D) = EQ(<D).

 10That is, the net potential gain corresponds to the spread between the terminal wealth resulting
 from the adopted strategy and the capitalized initial wealth.
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 The probability measure Q may be viewed as a static version of the classical Vj~
 martingale measures in a dynamic framework.

 The set Vj , previously defined, has also to satisfy some properties to be consistent with
 fundamental investment principles. For example, to comply with the diversification
 principle, any convex combination of admissible gains should also be an admissible
 gain, and therefore, the set Vj is always taken as a convex set.

 Market-Modified Risk Measures. Each agent A and C will have to determine his optimal
 financial investment by solving the following hedging/investment problem:

 min p/(^-Çt),
 StzVt

 where ^ is agent i's exposure, for i = A, C. The value functional of this optimization
 problem characterizes a new convex risk measure, which corresponds to the risk
 measure agent i will have after having optimally chosen her financial investment or
 hedge on the market. It is called the market-modified risk measure of agent i and
 denoted by pf. In the entropie framework, we get:

 pf (*) = Yi lnE0 [exp (-^*)] • (2)
 where 0 is the minimal entropy probability measure.11

 Therefore, in the following, the risk measure to consider when dealing with any
 agent is directly his market-modified risk measure instead of the original one. This
 allows taking into account simultaneous optimal investment decisions in the financial
 market, when the agent also trades in the cat bond market. In terms of probability
 measures, this means that we will not work directly with the historical probability
 measure P, but instead with the minimal entropy probability measure Q, which is
 common to all agents as they have the same access to the financial market.

 Remark 2: Even if there exists a unique large underlying financial market, the dif-
 ferent agents may not have the same access to it. Indeed, the various agents may be
 of very different natures a priori and the set of hedging products to which they have
 access may be completely different because of specific regulations, of usual strategies,
 and so on. This will not modify the general results of this article but will simply
 introduce some compensation terms that correspond to the likelihood ratio of the
 different probability measures obtained (for more details, please refer to Barrieu and
 El Karoui, 2003).

 Analysis of the Simple Transaction

 This section is devoted to the study and analysis of the simple transaction, which has
 the structure shown in Figure 1.

 nFor more details, please refer to Barrieu and El Karoui (2003, 2005).
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 Figure 1

 Simple Transaction

 Note that two different prices are involved in this transaction: n a is the price for the
 simple cat bond issued by agent A and purchased by agent B, while n c is the price paid
 by agent C in his transaction with agent B. Note also that agent B is assumed to fully
 transfer the risk of the cat bond, embedded in the contingent payment of the nominal
 N. He acts as a pure intermediary. We want to determine the optimal structure of the
 cat bond, i.e., the price(s) and the nominal amount. To do so, we proceed in several
 steps. We first characterize the different payoffs of the three agents involved in the
 transaction, as well as their respective role in characterizing the optimal transaction.

 Payoffs and the Structure of Cash Flows

 In this simple framework, there are only two relevant states of nature depending on
 whether a natural catastrophe occurs before T (r < T) or not (t >T). The probability
 of each event has to be considered under the reference probability measure for the
 study; i.e., the minimal entropy probability measure Q and p denotes Q(r < T).
 The subsequent table summarizes the payoff of the three agents in the different
 possible situations. Note that agent B is indifferent between the occurrence and the
 nonoccurrence of a natural catastrophe as he transfers all the contingent cash flows
 from agent A to agent C.

 State of Nature Probability Under Q Agent A Agent B Agent C
 T<z \-p tta-N *c-*a -nc + N
 T < T

 Transaction Feasibility and Pricing Rule

 Looking more closely at the structure of the simple transaction and at the related cash
 flows, the different characteristics of the transaction are determined in the following
 way:

 • Agent A determines the volume of the transaction with agent B; in another words,
 he determines the "reservation price," n a, of the first part of the transaction.
 • Agent C, on the other hand, determines the volume of the other transaction, i.e.,
 the "reservation price" ttq-
 • Finally, as advisor of the whole transaction, agent B chooses the nominal amount
 of both transactions, N, so as to maximize the fees he can generate under the
 participation constraint imposed by both agents A and C. These fees are usually
 called servicing fees. They cover the expenses related to the design, setup, and
 issue of the transaction.
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 Therefore, the optimization program of the transaction can be written as follows:

 max (tzq - tta)
 N,nA,nc

 S* ^ ' lp™(nA-NlT>T-Xlr<T)<p™(-XlT<T)
 S* ^ ' 1 Pç!(-xc + N1T>T) < p£(0) ' (3)

 Such an optimization problem is rather standard in risk theory. The existence of a
 solution relies upon the convexity of the various functionals involved, and does not
 depend on any specific relationship between the various risk tolerance coefficients of
 the different agents. In particular, as underlined in Proposition 4, without any addi-
 tional assumption, the optimal transaction, obtained as solution of the optimization
 problem, will always take place as the three agents improve their situation by doing
 it.

 The indifference pricing rules are obtained by binding each constraint at the opti-
 mum and using the cash translation invariance property of the market modified risk
 measure of agent A and agent C:

 nA = pmA (-Nlr>T - Xlr<T) - pmA (-Xlr<T) ,

 7tc=pZ(0)-pZ(nit>t).

 The different characteristics will be studied in details in the subsequent subsections,
 considering entropie risk measures to obtain explicit formulation of the relevant
 quantities.

 Volume of the Transaction

 We first consider the volume of the simple transaction. As previously noticed, the
 price of each part of the transaction represents the volume of capital flowing into
 the cat bond market. Both pricing rules can be obtained explicitly in the entropie
 framework as shown subsequently.

 Cat Bond Transaction Between Agent A and Agent B.

 The lower bound to the price agent A is ready to accept for the cat-bond, giving also
 a lower bound to the volume of the transaction, is

 nA = pmA (-Nlr>T - X1T<T) - pmA (-X1T<T) •

 From there, using the entropie risk measure, we get:

 Proposition 1: The indifference volume for the cat-bond issue by agent A is given by:

 (1 - p)exp U (-n) + pexp (-x) }
 nA = yAln, (1 - p)exp U > + fl pexp \yA } • (4)

 (l-pRpexp^-xJ fl
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 Note that n A > 0 iff N > 0.

 Cat Bond Transaction Between Agent B and Agent C.

 On the other hand, the upper bound to the price agent C is ready to pay for the cat
 bond, giving also an upper bound to the volume of the transaction, is

 7rC=p£(0)-p£(Nlr>T).

 From there, using the entropie risk measure, we get:

 Proposition 2: The indifference volume for the cat bond issue by agent B is given by:

 nc = -ye In [(1 - p)exp (~NJ + p\ . (5)

 Note that nc > 0 iff N > 0, and d 7ic/SN > 0 for any N.

 Problem of Agent 8: Determination of the Nominal Amount of the Transaction

 It now remains to optimally determine the nominal amount of both parts of the
 transaction. Agent B has to solve Program (3) under the pricing constraints imposed
 by agent A and agent C given by Equations (4) and (5). The following result prevails:

 Proposition 3: The optimal nominal amount for the simple cat bond is given as:

 N=- Ç- + X (6) YA + YC

 The optimality condition given by Equation (6) is the well-known Borch's condition

 for Pareto-optimal risk sharing. We get N = aX, with a = y^yc < 1. In equilibrium,
 agent A retains part of the risk X and this part increases with his risk tolerance - for a
 given risk tolerance of agent C. Note that the role of agent B is to make the transaction
 feasible. He perceives the difference between juq and n a, which would not exist if
 agent A could contract with agent C directly (only tzq would appear in this case, with
 the same value).

 Proof: Using the optimal pricing rule together with the cash-translation invariance
 property of the risk measure p^, program (3) becomes

 min {p^(-XlT<T - Nlr>T) - p^(-Xlr<T) + p£(Nlr>T) - p£(0)} ,
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 or, as p™ (0) = 0 in the entropie framework,

 min {pmA (-XW - Nlr>T) - pmA (-X1T<T) + p£ (N1T>T)}

 (1 - p)exp ^W ( - n) + pexp U (-x) ) = min. Mln
 (l-p) + pexp(- X) \YA / )

 + ye In F(l - ^)exp (--Nj + p~\ ■ .

 Equivalently,

 = mm{Mln{(l-p)exp(i-N) + pexp(i-x)}

 + yc In T(l - p)exp ("^^) + ?]} •

 We write the first-order condition:12

 - (1 - p)exp (-n) --(1 - ^)exp (- - n)
 (1 - p)exp (- n\ + pexp (- x\ (1 - p)exp (- - n\ + ^

 or

 exp f - N] exp I

 (1 - p)exp (-n) + pexp ( - x) (1 - ^)exp (- - n) + ^

 Finally, after some simplifications, the result immediately follows. Q.E.D.

 Remark on the Transaction Feasibility

 The following result ensures the feasibility of the simple transaction. Agent B will get
 a positive fee from organizing the simple cat bond arrangement.

 12The second-order is satisfied as the second derivatives with respect to N is positive.
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 Proposition 4: The indifference buyer's price of agent C is larger than the indifference seller's
 price of agent A.

 The result reflects the economic surplus provided by Pareto-optimal risk sharing
 between agents A and C. The surplus goes primarily to agent B, who makes the
 overall transaction feasible. Note, however, that if the difference between n q and n a
 is high enough, and exceeds the usual servicing fee required by agent B, agent A may
 negotiate with the financial intermediary to get part of this surplus.

 Proof: Let us consider n a - xc and use the fact that at the optimum N = aX, with

 a = ^feTherefore'

 (l-p)exp(i-ax) + ?exp(i-x)

 (1-É>) + Pexp^-Xj

 + ye In [(1 - P) exp (-a*) + p\ .

 = yA\rv\{\ - p)exp (±- (a - 1) x) + ?]

 -Mln[(l-f>)exp(-i-x) + />]

 + yc In [(1 - P)exp (~^:«x) + p] ■

 Replacing a by its value, we get:

 xa-xc = y^ln (l-p)expf

 - YAln\(l ~ ^)exp (-- Y A x) + p\ L \ Y A / J

 + YC In L [(1 - ?)exp ( L V y/i + yc / J

 or

 xA-xc= (YA + yc)ln F (1 - p)exp ( L V YA + YC ) J

 - yAln T(l - ^)exp (~x\ + p\ .
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 But the function y -► y ln[(l - p)exp(-^X) + p] is a strictly decreasing function.
 Since y a + YC > Y 4/ we immediately obtain:

 *A - nc < 0.

 Hence the result. Q.E.D.

 Analysis of the Hybrid Transaction

 This section is devoted to the study and analysis of the hybrid transaction, which has
 the structure shown in Figure 2.

 Note that two different prices are involved in this transaction: nhA is the price for the

 simple cat bond issued by agent A and purchased by agent B; n1^ is the price for the
 hybrid cat bond issued by agent B and purchased by agent C. Moreover, the nominal
 amount Nh of the cat bond embedded in the hybrid transaction will be in general
 different from the optimal nominal amount N = a X obtained in the case of a simple
 cat bond.

 Note in addition that, in contrast to the simple transaction, the intermediation role of
 agent B becomes more active and necessary in the hybrid transaction. The necessity
 arises from risk management considerations. Agent A cannot issue directly the hybrid
 cat bond himself because of the additional hybrid payment H. In contrast, agent B
 is able to issue the hybrid product, involving some zero-premium options. More
 precisely, the hybrid structure received by agent C includes the purchase of a put,
 paying H if there is a natural catastrophe and a market crash, and the sale of a call
 paying H if there is no natural catastrophe and a market boom. The initial price
 of the put and that of the call coincide, and hence it simply remains the exchange
 of the contingent payoff at maturity. Such a condition on the initial prices of both
 options imposes some constraint on the market events under consideration, as we
 will see in the subsection below when looking at the various cash flows. Once the
 transaction has been completed, no agent is simultaneously exposed to both risks -
 natural catastrophe and market crash. Agent A retains some exposure from the cat

 Figure 2

 Hybrid Transaction
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 risk if Nh < X. Agent C assumes the remaining exposure to the cat risk against a
 random suitable compensation (the payoff prospect from the hybrid cat bond) and
 agent B does not retain any risk, as he is a pure intermediary and transfers all the cash
 flows to either agent C or to the market.

 We want to determine the optimal structure of this hybrid transaction. To do so, we
 proceed in several steps. We first characterize the different payoffs for the three agents
 involved in the transaction, as well as their respective roles in the transaction process
 and then we determine the transaction volume and the optimal conditional payoff
 amounts Nh and H.

 Payoffs and the Structure of Cash Flows

 Since the payoff structure of the hybrid cat bond depends on the joint occurrence of
 a natural catastrophe and a crash, and that of no natural catastrophe and a market
 boom, it is essential to introduce the joint distribution, as the timing of the various
 events also matters. We introduce the following notation: as previously, r denotes the
 random time of occurrence of a natural catastrophe, î will now represent the random
 time of occurrence of a market crash and Y that of a market boom.

 To simplify, we make the two following assumptions:

 • There is no dependence between the occurrence of a natural catastrophe and
 that of market-based events. For this reason, the order of occurrence has no
 impact on the probability of realization. In particular, the amount H will be paid
 as soon as a catastrophe and a market crash have both occurred before T.

 • The events "market crash" and "market boom" are mutually disjoint in the
 sense that they cannot both occur before T. Such an assumption can be justified
 if the maturity of the transaction T is sufficiently close.

 Under these assumptions, the following states of nature are relevant and the joint
 distribution of both events can be written under the reference probability measures
 of this study, i.e., the minimal entropy probability measure 0/ as:

 Probability Probability
 Cat Event

 no cat i < T < r (1 - p)qu
 r >T 1-p T<r<randT<r<T (1- p){\ - qu)
 cat I < t < T and r < I < T pqL
 * <T

 with qu = Q(r < T) and qi = Q(î < T).

 The table on the next page summarizes the payoff of the three agents in the different
 possible situations.

 As previously mentioned, both options should have the same initial price, computed
 under the pricing measure Q. As both options are traded in the market, we could
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 State of Nature Probability under Q Agent A Agent B Agent C
 t < T < x (1 - p)qu jthA -Nh nhc- iz\ -nhc +Nh -H
 T <T<xandT <x <x (1 - p)(l - qu) n\ - Nh nhc - n\ -nhc + Nh
 I < x < T and x < I < T pqL *hA-X *c ~ *a -nc + H
 t<T<I

 assume that they are priced using the risk-neutral pricing rule with respect to any
 equivalent martingale measure (the market is a priori not complete, so there is an in-
 finity of such measures), in particular with respect to the minimal entropy probability
 measure, which is our reference probability measure in this study. More precisely, we
 should have

 E0(HlT,r<T) = EO(H1T<T<T)

 or equivalently

 Q(r,î <T) = ÛCr < T < r),

 which can also be written as the following condition:

 pqL={\-p)qU- (7)

 Such a condition on the probability of occurrence (under 0) of the events "market
 boom" and "market crash" has an impact on the definition of these events themselves.
 More precisely, if a crash is defined as the fall of the stock market index below a certain
 level Lj this condition characterizes another level T for the market index such that a
 stock market boom is defined to occur exactly when the index rises beyond this level.
 From condition (7), to every definition of a market crash corresponds a particular
 definition of a market boom.

 Transaction Feasibility and Pricing Rule

 Looking more closely at the structure of the hybrid transaction and at the related
 cash flows, the different characteristics of the hybrid transaction are determined in
 the following way:

 • Agent A determines the volume of the transaction with agent B, in another words,
 the "price" n\ of the first part of the transaction.

 • Agent C, on the other hand, determines the volume of the other transaction, i.e.,
 the "price" nhc.

 • As advisor of the whole transaction, agent B chooses optimally the nominal amount
 Nh of both transactions and the payoff H of digital puts and calls involved in the
 hybrid structure. As for the simple structure, agent B wants to maximize the fees
 he can generate from this transaction, under the participation constraint of both
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 agents A and C. These servicing fees will cover the expenses related to the design,
 setup, and issue of the hybrid transaction.

 Therefore, the optimization program is now written as follows:

 max \7Tr - 7*hA I /

 s S* t " j Pa( - N^r>r + n\ - XiT<T) < pmA (-XiT<T) (8)
 s S* t " 1 p^{NhlT>T -n£ + HlT,r<T - Hl?<T<r) < P? (0) .

 Volume of the Transactions

 We first consider the volume of the simple transaction. As previously noticed, the
 price of each part of the transaction represents the volume of capital flowing into
 the cat bond market. Both pricing rules can be obtained explicitly in the entropie
 framework as shown subsequently.

 Cat Bond Transaction Between Agent A and Agent B

 The lower bound to the price agent A is ready to accept for the cat bond, giving also
 a lower bound to the volume of the transaction, is

 A = PÂ( - Nhlr>T - XlT<T) - Pa (-Xir<T) •

 From there, using the entropie risk measure, we get:

 Proposition 5: The indifference volume for the cat bond issue by agent A is given by:

 (1 - p)exp U (-Nh) ^ + pexp (-x) }
 *kA = YAl*

 (l-p) + pexpl- M y a X) \ y a /

 Note that n\ > 0 if Nh > 0.

 Cat Bond Transaction Between Agent B and Agent C

 On the other hand, the upper bound to the price agent C is ready to pay for the cat
 bond, giving also an upper bound to the volume of the transaction, is

 4 = PC (°) - Pc(NklT>T + Hlr j<T " H1T<T<T).

 From there, using the entropie risk measure, we get:
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 Proposition 6: The indifference volume for the hybrid cat bond issue by agent B is given by:

 nhc = -ye In ((1 - p) (qu exp (±-{H - Nh)) + (1 - qu)exp (-^N*))

 + PRLexp(~H) + p(l-qL)y (10)

 Problem of Agent 6: Determination of the Nominal Amount of the Transaction and of
 the Hybrid Amount

 It now remains to optimally determine the nominal amount Nh of both parts of the
 transaction and the hybrid amount H. Agent B has to solve program (8) by considering
 the pricing rules given by Equations (9) and (10).

 The problem of agent B can be expressed as:

 max (nr c -nA, H/Nh\ c A)

 subject to

 4 = -YC In ((1 - P) (quexp (^(H - Nh)^j + (1 - qu)exp {-^N>t))

 + PqL exp (

 [ (i-p) + pexp[-X)

 Optimization in Nh. We aim at solving the following program for any given H:

 max [4(Nh, H) - :zhA(Nh, H)}.
 Nh

 Proposition 7: The optimal nominal amount of the transaction is given by:

 Nh = -J^-X-^-^-Cc + + (qu,qL,H), Y A + YC YA + YC

 where

 Cc (qwqu H) = p£ (-H1T<T) - p£ (Hlr<T) .
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 Note that Nh is composed of two terms: the first term is N (the Borch risk-sharing
 condition from the simple cat bond); the second term introduces a link with the
 financial market conditions and the contingent payment H, but in a nonlinear way. As
 soon as H is positive, this second term is positive (using the decreasing monotonicity
 of the risk measure p™) and the nominal amount Nh is larger than that of the simple
 transaction N. Note also that this second term is increasing in the share of agent A
 in the aggregate risk tolerance y a + YC- Therefore, the difference between both cat
 bond transactions will be all the more important; therefore, because agent A is more
 risk tolerant, compared to agent C, everything else remaining constant. This will be
 further commented in the "Remarks on the Hybrid Transaction" section.

 Proof: In the entropie framework, the program becomes

 l(l-Wexr(i-^) + pexP(i-x)|
 (l-p) + pexp(- X)

 N" +yc In ((1 - p) (quexp (±(H - N*)) + (1 - qu)exp ("^N*))

 + pqL exp (- - Hj + p(\ - qi)\

 or equivalently:

 ndn < +yc In ((1 - p) (quexp (-(H - Nh)\ + (1 - qu)exp (-- Nh\\ .

 + PU exp (-1-HJ + p(l - qL)\

 We write the first-order condition:

 a-W(i^) + ,«p(JLx)

 qu exp ^~ (H - Nhfj + (1 - ^)exp (~^^)

 (1 - p) (quexp (^- (H - Nhfj + (1 - ^)exp (-1-N*\\ + pqL exp f~HJ + ?(l- qL)

 or equivalently, after some simplifications:
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 exp(^N*)('texp(~^H)+<i~''t>)

 -•*(~*)«*(à*)(w«p(£H) + O-,U>).

 Finally, taking the logarithm on both sides leads to

 /I 1\ 1 ( iuexp(^-H)+(l-qu)\

 U YC) YA ^exp(--lH)+(l-,L)J

 Hence the result. Q.E.D.

 Optimization in H. Let us now look at the optimization with respect to H. We now
 have to solve the following program for any given Nh:

 max^N^-Tr^AH)}.
 M

 Proposition 8: The optimal hybrid amount to be paid to the investor when both a crash and
 a catastrophe occur before the maturity is given by:

 H=^Nh. (11)

 Proof: In the entropie framework, the program becomes

 j(l-p)exp(i-^)^exp(i-x)|
 (1-P) + Pexpl-X\

 \ Y ri. / *

 min H . / 1 \ \ '
 H +yCïn^l-p)\juexp(-(H-Nh)) + (l-qu)exp(--Nh)) / 1 \ \

 + pqL exp (- - Hj + p(l- qL)J

 or equivalently,
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 minyc In ((1 - p) (quexp (±(H - N*)) + (1 - qu)exp (-^^))

 + PqLexp(-±Hj+p{1-qL)y

 We write the first-order condition:

 (1 - p)quexp(- (H- N*)) - ^Lexp (--h)

 (1 - p)(quexp(±- (H-N*)) +<1 -*u)exp(-^N*)) + ^L exp (- -^ h) + p(l-qL)

 or

 (l-p)quexp(±(H-Nkî) = PqLexp(-±Hy

 Hence, after some simplifications, we have:

 From the condition 7, we have the desired result. Q.E.D.

 Remarks on the Hybrid Transaction

 Let us now make a few comments on the hybrid transaction and in particular compare
 it with the simple transaction in terms of nominal amounts.

 First, the nominal Nh is an increasing function of H and for H > 0, Nh >N. On
 the other hand, the amount H is a simple increasing function of Nh. The situation
 H = 0 is impossible and therefore the nominal amount of the hybrid transaction will
 always be larger than that of the simple cat bond. This result is illustrated in Fig-
 ure 3 representing the distribution of the relative increase in the nominal amount

 N ijN obtained when performing random experiments. More precisely, we con-
 sidered X, y a, YC, V' and °lu as independent uniform random variables taking
 values in

 X g [10,210]

 yA€ [0,1000]

 < YC G [0,1000]

 pe[0,l]

 que [OA]

 and then did 5,000 independent drawings.
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 Figure 3

 Relative Increase in the Nominal Between the Hybrid Transaction and the Simple
 Cat Bond

 The average relative increase in the nominal amount is 27%.

 Moreover, the relative increase in the nominal amount N^N is a decreasing function
 of the relative tolerance of agent C, as illustrated in the following simple example
 where

 X=150

 yA = 10

 P = 0.2

 qu = 0.2

 In other words, when the investor is relatively more risk tolerant, the hybrid nominal
 amount is relatively not so important. The investor is not so eager in terms of nom-
 inal amount to receive when there is no natural catastrophe. As previously noticed,
 the difference between both cat bond transactions will be all the more important;
 therefore, because agent A is more risk tolerant, compared to agent C, everything else
 remaining constant. Moreover the simple nominal N is increasing in the the share of
 agent C in the aggregate risk tolerance. Therefore, when agent C is more risk tolerant,
 compared to agent A N will be larger and the difference between both cat bond
 structures will be small, everything else remaining constant. In contrast, if agent C
 is less risk tolerant, compared to agent A, he will take less of the cat risk (N will be
 smaller) and the difference between both cat bonds will be more important. In other
 words, when investors are relatively risk tolerant, compared to insurers, the nominal
 amounts involved in simple cat bond transactions will be large, and hybrid cat bonds
 will not make much a difference. In contrast, if investors are relatively risk averse,

 compared to insurers, simple cat bonds will attract less capital, and introducing
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 Figure 4

 Relative Increase in Nominal With Respect to the Relative Tolerance of Agent C When
 X = 1 50, p=qu = 0.2, and yA = 1 0

 hybrid cat bonds will have a significant impact on the volume of capital flowing into
 the cat bond market (Figure 4).

 Impact of the Hybrid Component on the Volume of the Transaction

 As previously mentioned, the volume of the transaction (simple or hybrid) is mea-
 sured by the bound imposed on the price. The price corresponds to the amount of
 money involved at the beginning of the transaction and therefore can be naturally
 interpreted as the volume.

 Point of View of Agent A

 First note that agent A is indifferent from his risk measure point of view between
 doing the hybrid transaction and the simple transaction. This is a direct consequence
 of the indifference price calculation. Using the same type of arguments, to have an
 idea of the impact the hybrid component has on the volume of the transaction for
 agent A, we look at the difference between nhA and n a- The following result holds
 true:

 Proposition 9: The volume of the hybrid transaction is more important for agent A:

 n\ > n a-

 Therefore, the volume of the cat bond market for the insurance industry is larger
 when a hybrid component is added to the transaction. In other words, the amount of
 capital received by the insurance sector is more important when a hybrid structure is
 issued.

 Proof: The result is a straightforward consequence of the characterization of the
 indifference prices itself:
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 "a = Pa (-Nhlr>T - X1T<T) - (>mA (-X1T<T)

 and nA = pmA (-N1T>T - X1T<T) - pmA (-XlT<r) ,

 and the fact that Nh >N, using the decreasing monotonicity of the risk measure
 pmA. Q.E.D.

 Point of View of Agent C

 First note that agent C is indifferent from his risk measure point of view between doing
 the hybrid transaction and the simple transaction. This is a direct consequence of the
 indifference price calculation. To have an idea of the impact the hybrid component
 has on the volume of the transaction for agent C, we look at the difference between
 7Tç and ne- The following result holds true:

 Proposition 10: The volume of the hybrid transaction is more important for agent C:

 tt£ >7tc.

 Therefore, the volume of the cat bond market for the investors is larger when a hybrid

 component is added to the transaction. In other words, the investors are ready to put
 more capital in this type of hybrid structure than in traditional cat bonds.

 Proof: From the characterization of the indifference prices, we know that

 *c-*c

 = -ye In ((1 - P) (qu exp (i- (H - N*)) + (1 - ^)exp ("^)) + PU exp ("^H) + PQ ~ U))

 + yc In [(1 - p)exp ("^) + p] '

 I" (1_WeXp(-i-N) + p
 (l-p)^aexp^(H-^)^+(l-^)exp(|-^N^ + ^Lexp^-^H^ + ?(l-^)

 where N^ is the nominal amount of the hybrid transaction.

 Let us first work on the denominator:

 V^(l-p)^uexp^(H-Nh^+(l-qu)exp^Nh)^
 + pqL exp ( V YC /

 From Proposition 8, we know that the optimal hybrid amount H = \Nh. More-
 over, condition (7) imposes that (1 - p)qu = pqi. Using these two identities, the
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 denominator becomes

 V = (i _ p)exp (- - Nh) + p + 2pqL exp (- - \Nh) - pqL exp (- - Nh) - pqL. \ YC / \ YC * / \ YC /

 Since

 lpqL exp (-^^N^ - pqL exp (-^N*) - pqL

 = -^L(exp(--iiN^l)2<0/

 the denominator is always

 V<(l-p)exp(- - tA + p,

 and we deduce the desired result. Q.E.D.

 Remark on the Hybrid Transaction Feasibility

 We finally have to consider the point of view of the intermediate agent B. His role is
 essential as he ensures the feasibility of the global transaction. In the simple case, we
 have previously seen that he always has an interest in doing the transaction. We now
 have to look at his interest in doing the hybrid transaction, compared to the simple
 case. To do so, we compare the fees he can get when doing the hybrid transaction
 with his fees when doing the simple transaction:

 [ Fees when hybrid transaction: tïq - nhA

 [ Fees when simple transaction: ttq - ka

 The following result ensures the feasibility of the hybrid transaction, since agent B
 will get a positive fee from organizing the hybrid arrangement. It also ensures the
 dominance of the hybrid cat bonds over the simple structure.

 Proposition 11: The indifference buyer's price of agent Cfor the hybrid structure is always
 larger than the indifference seller's price of agent A:

 4 > n\.

 Moreover, the hybrid economic surplus is larger than the simple economic surplus:

 7tC-7tA> nC- *A-
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 This result provides a necessary condition for the feasibility of the hybrid cat bond
 transaction. As in the case of simple cat bonds, the difference n^ - nhA > 0 reflects
 the economic surplus derived from Pareto-optimal risk sharing. It will go to agent B
 or will be shared between agents A and B if the surplus is high enough. Moreover,
 as the economic surplus derived from hybrid cat bonds, n^ - tz\, is larger than the
 one derived from simple cat bonds, n c - n A* we get a final strong argument in favor
 of hybrid cat bonds. The hybrid surplus is indeed high enough to pay for the service
 provided by agent B, who plays a more active role when hybrid cat bonds replace
 simple cat bonds.

 Proof: By construction, the optimal hybrid nominal, denoted here by Nhf*, and the
 hybrid amount, denoted here by H*, have been characterized as to maximize the fees
 collected by agent B

 (N*'*, H*) = argmax {n£(Nh, H) - nhA(Nh, H)}.

 Hence, for any other amounts (Nh, H), we have

 7r£(Nh*, H*) - nhA{Nh*, H*) > 7t£(Nh, H) - nhA(Nh , H).

 Considering for instance H = 0 and Nh = N = ^^X (which is clearly suboptimal

 since H* = \Nh'* by 8), we have:

 7i^{Nh\ H*) - nhA(Nh*, H*) > tt£(N,0) - 7r^(N,0).

 But, from the characterization of the various indifference pricing rules, we have:

 tt£ (N, 0) = TTc (N) and nhA (N, 0) = nA (N) .

 Hence, from Proposition 4, we get the desired result:

 *C - *\ > *C - *A > 0. Q.E.D.

 The following random experiments give an illustration of the previous proposition.
 More precisely, we considered X, y a, YC, $, and qu as independent uniform random
 variables taking values in

 X 6 [10,210]

 yAe [0,1000]

 . yc €[0,1000]

 pe[0,l]

 que [0,1]
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 Figure 5
 Random Values of Delta_8

 and then did 5,000 independent drawings. A distribution for the smallest values of

 Delta.B =^-n\- (ttc - nA)

 is presented in Figure 5.

 Conclusion

 In this article, we analyze the effect of introducing hybrid cat bonds on the volume
 of capital flowing into the cat bond market. We use the concept of risk measure as
 analytical tool and proceed in two steps. In the first model, agent A is endowed
 with a catastrophic risk and uses a simple cat bond to transfer part of this risk to a
 nonexposed agent C. The transaction is performed with the intermediation of an SPV,
 agent B, who does not retain any risk. In the entropie framework, the optimal risk
 transfer depends linearly on the absolute risk tolerance coefficients of agents A and
 C, as expected from the classical theory of risk sharing.

 In the second model, the downside risk faced by agent C is taken into account. This
 risk materializes when both a natural catastrophe and a financial market crash occur.
 In this situation, agent C loses on both sides of her investment: the cat bond is triggered
 and returns nothing; at the same time, her financial portfolio value drops severely. To
 take both risks into account, a hybrid cat bond is set up by agent B, who takes care
 of transferring the conditional stock market risk to the index options market using
 zero-premium digital calls and puts. The created hybrid cat bond protects agent C
 against the downside risk. In the optimal arrangement, the risk is shared again by
 agents A and C according to a more elaborate nonlinear sharing rule.
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 In both models, we take into account the fact that both agents A and C are intrinsically
 exposed to the market risk, as they already hold optimal financial portfolios. This
 exposure is taken into account in their risk assessment via a modification of their
 initial risk measure. This has a direct impact on the volume of each transaction,
 determined in terms of the modified risk measure.

 The main result of the article is that introducing hybrid cat bonds would increase the
 volume of capital flowing into the cat bond market, in particular when investors are
 strongly risk averse, compared to issuers of cat bonds (insurers, reinsurers, and large
 corporations). Such a development is much needed given the somewhat disappoint-
 ing experience recorded with simple cat bonds since they were first introduced in
 1997. Hybrid cat bonds would not only enlarge the class of insurance-linked securi-
 ties. They would also allow better diversification of catastrophe risk in the financial
 market.

 This article represents a first step in the analysis of hybrid cat bonds. For this reason, it
 is necessarily exploratory. The two models presented are based on some simplifying
 assumptions, such as a binomial probability distribution for the catastrophe risk and
 zero-coupon bonds. Future research on this topic will be helpful to check that the
 main result of this article still holds when some of the simplifying assumptions are
 relaxed. The ultimate test of our arguments will obtain, however, when hybrid cat
 bonds appear on the market.
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