Pythonic
Python

Part I

The Basics:
Make Yourself Useful!

Marilyn Davis, Ph.D.

These written materials are a prop to motivate the
lectures in the
Pythonic Python
course at
Udemy.Com
They are not intended to be studied without the lectures
and are likely to confuse you rather than help you to
learn Python if you attempt to study this Lab Book
without the associated lectures.

Pythonic Python

Marilyn Davis, Ph.D.

Your Instructor

©2007-2013 by Marilyn Davis, Ph.D.
All rights reserved.

Cover images by ClintDavis.Com

ii

Syllabus

Lab 1 - Birds Eye View

* Executing a Python program
¢ Writing to stdout

* Assigning: labels and objects
* strings

Idle

Lab 2 - Branching and Looping

if, elif, and else

while and another else

* Iterating with a for loop

Counting loop with range

Relational and logical operators
* tuples
Lab 3 - Input and Exceptions

* Input from stdin
* Factory functions
¢ (Catching an exception:

e yetanotherelse

Lab 4 - Formatting Strings

¢ Formatting strings

* Integer division issue

Lab 5 - Functions

¢ Function protocols

Lab 6 — import

e import
* Module: random

¢ Introspection

Lab 7 - Attribute Scope

* Indentifier scope

Lab 8 — Flexible Functions

* Default function arguments

* Keyword function arguments

Lab 9 - Sequence Slicing

¢ Sequences:
. Types: str, tuple, 1list
e Accessing elements
e Slicing
Lab 10 - Sequence Accumulating

e Accumulating Sequences

Lab 11 - Sequence Differences

* Sequence Differences

* String Manipulation

Lab 12 - list Facilities

* Sorting Sequences

¢ str functions

Lab 13 - Sequences And Mutability

e Sequence Mutability

Lab 14 - sys Library

* Module: sys

iii

iv

Acknowledgements

These materials are the product of hundreds of programmers in the Silicon Valley. I'm grate-
ful for their feedback: finding errors, making suggestions, and honest reactions.

Thanks are also due to my family, Clint and Charlie Davis, for being proud of me, and relent-
lessly encouraging me to do what I really want to do, in spite of external pressures.

How To Use This Udemy Course

This online course is designed to emulate the face-to-face class that I developed while help-
ing hundreds of engineers in the Silicon Valley, and beyond, to learn Python.

It is expected that you are already a programmer and want to learn to program with Python.
There are no explanations in this material of the basic concepts of software engineering. You
are expected to already know these.

My goal in developing this class is to enable you to learn Python quickly, and while having
fun. You'll find that Python development, itself, is just like that: quick and fun!

I hope that you'll find the material presented in curiosity order and that the questions in your
mind are answered quickly.

This written material has very little written explanation. It is mostly program examples, ex-
ercises, and solutions; it motivates the video lectures.

There are two versions of this pdf: one for printing, and one for viewing.

Irecommend that you print, onto paper, the for printing pdf, double-sided, 3-hole-punched.
Put this pdfinto a 1.5 inch, 3-ring binder.

The first page is a material map, which shows that the solutions to the exercises are at the
back of the pdf.

There is a break page, page 77-78 of the pdf. Put a tag on that page so that you can find it
easily.

Your Python study will start with page 9 of this printed pdf. Follow along with the discussion
in the video Lab 01:Birds Eye View, taking copious notes on your printed pdf; then work
through the exercises that start on Lab 1, page 4 (or page 12 of the pdf).

When you have finished with the Lab 1 exercises, go to your tagged break page to find the
solution to the exercise, which is Lab 1, page 7. Place that page into the binder after page Lab
1, page 6 and follow the video Lab 01:Solutions.

Then we’ll move on to Lab 02:Branching and Looping.

In the end, all the pages will fit together, and there is an index. I hope you find the notebook
you assemble and annotate to be a valuable reference in your work with Python.

Thank you for taking this course with me. I hope you enjoy it; I know you will enjoy Python.

Marilyn Davis

Instructor: Marilyn Davis, Ph.D.

Email Address: marilyn@pythontrainer.com

Phone Number: (650) 814-4435

Book Recommendation

The Quick Python Book Second Edition by Vernon L. Ceder; ISBN # 9781935182207, pub-
lished by Manning.

Regrettably, it’s about Python 3, but the two Python languages are similar enough that you
can learn about both Pythons from this excellent book.

Online Resources

1. http://www.python.org and in particular: http://www.python.org/doc has very
helpful documentation, online and free.

2. The Python Cookbook by Alex Martelli, Anna Martelli Ravenscroft & David Asher. This
is a very interesting collection of Python code, best read after you have taken the class.
ISBN # 0-596-00797-3 and online free.

Python 2 Interpreter Please go tohttp: //python.org/download/ to download Python
2.7 for your computer. The Idle development environment comes in with the interpreter and,
unless you have another environment you are using, this is a good way to start.

Why not Python 3?

Please see http://wiki.python.org/moin/Python2orPython3. In my experience, by far
most engineers are interested in Python 2 to continue the work of their companies. While
the move from another language to Python brings big gains in productivity, readability, and
reusability, moving from 2 to 3 has no such gains. Also, because some of the libraries have
not yet been ported to 3, I believe that Python 2 is the practical choice for now.

PRIMES.PY Lab 1:Birds Eye View 1

primes.py
1 #!/usr/bin/env python
2 """Produces a list of prime numbers.
3
4 Here, we are only checking the "look" of Python code.
5 nnn
6 MAX = 100 # Here is a comment.
7
8 print 'primes less than', MAX, 'are:' # A new line is added
9 # by default.
10
11 for number in range (3, MAX, 2):

12 div = 2

13 while div * div <= number:

14 if number % div ==

15 break

16 div += 1

17 else: # Overloaded 'else', loop didn't 'break'.
18 print number, # Trailing comma suppresses the new line.
19 print # This only produces the new line.

Notes:

Call on the command line if you are running *NIX.

$ primes.py
primes less than 100 are:
357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Or, invoke the interpreter:
$ python primes.py

primes less than 100 are:
357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

2 Lab 1:Birds Eye View IDLE.IMAGE

Or, ask the interpreter to run it and then stay active for
introspection.

$ python -i primes.py

primes less than 100 are:

357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
>>> number

99

>>>

Eile Edit Debug Options Windows

primes.py - /home/marilyn/python/mm/labs/lab_01_output/primes.py 0, 15:52:39)
< File Edit Format Run | Options Windows
]ﬁ?;;;?g;;? ------------ “nse ()" for more inform

Python Shell A
"""Produces. 22200200000 rime numbers.

Check Module Alt+X

Here, we arRunModule F5 |[ng the "look" of Python code.
mwmn

MAX = 100 # Here is a comment.

(kkkkkkkkkkkkhkkkkkkkkrk

rarn about the connecti

(. s
'_;f print 'primes less than', MAX, 'are:' # A new line is added by default. il era: intemal *

for number in range (3, MRX, 2): ok 'visibleon: any exte !

div = 2

while div * diwv <= number:
if number % div ==

) or received from the

(kkkkkkkhkhrk ke kR ko k

break
div += 1
else:
———
print number, # Trailing comma suppresses the new line. i
number += 2
rint This onl roduces the new line.
3 . 28 47 53 59 61 67 71 73 7
" Notes:

=

Call on the command line if you are running *NIX.

Figure 1: Idle Development Environment

Integrated development environments for Python abound. We will be using idle, the original
Python environment, because it is free and a no-brainer. But, some others are much better:

* http://stackoverflow.com/questions/81584/what-ide-to-use-for-python

e http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

OUTPUT.PY Lab 1:Birds Eye View
output.py
1 #!/usr/bin/env python
2 """Demonstrates 4 ways to delimit strings."""
3
4 'Hello world'
5
6 'She said "Hello world"'
7
8 "She said 'Hello world'"
9
10 '"'"'Little dark woman of my suffering,

11 with eyes of flying

paper,

12 you say "Yes" to everyone,
13 but you never say when.
14 '''" # end of string started on line 10.

$ output.py
Hello world

She said "Hello world"

She said ’Hello world’

Little dark woman of my suffering,

with eyes of flying paper,
you say "Yes" to everyone,
but you never say when.

$

Raw strings:

>>> print r"\n"

\n

KThese come in handy with regular expressions. /

4 Lab 1:Birds Eye View LAB

1. The interpreter works as a calculator. Type this at the prompt:

>>> 1 + 2 + 4

Then try:
>>> + 8
Type:

* On Windows and Linux:
- Alt-p repeatedly to cycle through previous lines.
— Alt-n repeatedly to cycle back.

* On Mac:

- Ctrl-Alt-p repeatedly to cycle through previous lines.
— Ctrl-Alt-n repeatedly to cycle back.

Now, make a program module (script) with the 1 + 2 + 4lineinit ie, 1 + 2 + 4.
Run it. Does it work? No? Fix it.

Note that the interpreter displays its evaluation of the line but that a program will not
display unless you ask it to print.

LAB

Lab 1:Birds Eye View 5

2. Although Python tries to remove the back-slash from your code. Sometimes you need

1t.
Try this in the interpreter:

>>> greeting = "Hello \nworld."
>>> greeting

Now try:
>>> print greeting

Notice that printing interprets the backslash-n to create a new line, while evaluating
just spits out the raw string.

And try:

>>> food = "popcorn"
>>> print food * 3

and

>>> food + food

+ means concatonation to strings.

* means repetition to strings.

. Write a script to produce this output — EXACTLY :

He said "Hello World".
She said ’Hello Sky’.
She said "He said ’Hello World’".

(Hint: This is very easy if you remember to use triple-quotes. In fact, try to always avoid
using a backslash in your code to keep it Pythonic, i.e., readable.)

