
Using Blazored Toast to Improve the UX
Now that we have a working form, the only thing left to do is to improve the user
experience. Nobody likes a mute form, and we would like to see if the form
submit action succeeded or failed. In order to implement the notifications, we’ll
use a component called Toast. Bootstrap has its own toast component, but this
time we’ll go with the Toast that is implemented specifically with the Blazor in
mind. This component comes as a NuGet package and we can install it through
the package manager console with Install-Package Blazored.Toast… we’ll make
sure to select the main project and then just install the package. Okay, the first
thing we need to do is to register the Blazor Toast Service in the Program class…
so let’s add it to the services with the AddBlazoredToast() extension method…
And let’s make the service available through the _Imports.razor file. Great. Now
we can proceed to actually create and configure the component. To do that, we
need to go to the MainLayout.razor file and add the <BlazoredToasts>
component… This is also the place to do our initial configuration and we’ll add a
few default values. First, we want to add the position… with
Position=”ToastPosition.TopRight”... and since the compiler is getting angry at us,
we’ll import the Blazored.Toast.Configuration in the Imports file… Then, we want
to set the timeout to 10 seconds, that’s the delay after which the toast will
disappear… and the default icon type to FontAwesome... We also want to set the
SuccessIcon class… and ErrorIcon class… to make our toasts a bit easier on the
eyes. That’s about it. The default value for the Position attribute is actually the
top right, but we’ll leave it since you might want to change the position of your
toasts. There are many more options available for configuring the toast
component, but we’re using the default styles, so this works for us. We’ll link the
documentation below the video so you can check out what else you can configure
at this point. The classes we’ve used for the icons are actually from the open
iconic, which is the open-source set of icons, and we’re using them because they
come as a part of the blazored toasts styles. We’ll link the icons right below the
video. Speaking of stylesheets, we still haven’t added a blazored toast stylesheet,
so let’s go to the index.html and add it… Okay, now we’re all set, so let’s go to the
CreateProduct class… and modify the Create method… First, we need to inject the
toast service… so let’s add a new property of the type IToastService… and then
import the missing dependencies… and let’s mark it with the Inject attribute.
Then, let’s go to the Create method… and call the success toast since we’re sure
we’ll get the success result at this point. We can do that by calling the
ShowSuccess method of the toast service… and add a simple message to inform

the user about the action success… After that, we want to clear the form, in case
the user wants to add more products. To do that, we can just set the product to
the new Product instance. Remember, our interceptor handles the bad request
response, so we can go to the interceptor to add the error toast. Okay, since the
interceptor is a service, we need to inject our toast service through the
constructor… so let’s add one more parameter of the IToastService… and one
more private readonly field … and then just assign it in the constructor… Now we
can go to the BadRequest case, and add the error toast with the
_toastService.ShowError method, and pass the message as the argument.
Excellent. Let’s run the application and test this out… Navigate to the create
product form… and then fill in the data quickly… Okay, let’s submit the form… and
there’s our success toast… As you can see the form has been cleared immediately
like we’ve wanted to… That’s great! Now let’s head back to the ProductController
on the server-side… and let’s force the BadRequest result… by commenting out
everything but the BadResult…and adding a simple message. Now we can run the
server again… And try filling in the form one more time… This time we can use the
random data since we’ll get a bad result anyways… And there we go. This time,
we’ve left the data in the form, if the user wants to try and correct the fields
before resubmitting the form again. After this, we can head back to the server
app and uncomment the code in the action… Before we finish this module, we
have to fix one thing. With the current implementation, as soon as we
successfully create a product, our form gets cleared out, but the Create button is
still enabled and our form is not validating input fields. Well, we should fix
that. So, let’s navigate to the CreateProduct class… and modify the Create method
by adding a new event to the OnValidationStateChanged event handler… and
calling the NotifyValidationStateChanged() method, to explicitly call the
ValidationChanged event. Then let’s generate our missing method… Inside it, we
want to disable the button by setting the formInvalid field to true. Also, we
remove the HandleFieldChanged event from the handler, create a new instance of
EditContext, add again the HanldeFieldChanged event to the handler, and finally
remove this method from the OnValidationStateChanged handler. Lastly, we have
to extend the Dispose method and remove both events from their handlers.
Excellent. With this in place, our button is going to be disabled as soon as we
create a new product, and also if we start creating a new one, our validation will
work as it is supposed to. That’s it, we have a form for creating new products in
our application. In the next module, we’ll see how we can replace the image URL
field with the real file upload field and upload it directly.

