National 5 Maths Formula List

Pythagoras' Theorem

Pythagoras' Theorem states that for any right-angled triangle the 'sum of the squares of the two short sides equals the square of the long side.'
a

b

For the above triangle with short sides a and b, and long side c we have $a^{2}+b^{2}=c^{2}$

Circles

Circumference

$C=\pi d \quad$ where d is the diameter

Arc Length

Arc length $=\frac{\text { angle }}{360} \times \pi d$

Area

$A=\pi r^{2} \quad$ where r is the radius

Sector Area
Sector area $=\frac{\text { angle }}{360} \times \pi r^{2}$

Vectors

Magnitude (Length) of a Vector
For the vector $\underline{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$, the magnitude of \underline{a}, denoted $|\underline{a}|$, is given by

$$
|\underline{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Comparing Data

Interquartile Range $=Q_{3}-Q_{1}$
Semi-Interquartile Range $=\frac{Q_{3}-Q_{1}}{2}$
Standard Deviation
S. D. $=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
S. D. $=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}$

Where n is the number of data points in the set, \bar{x} is the mean, and \sum means 'the sum of', indicating to add the values together

Straight Lines

Gradient of a Straight Line
For any two points on a line $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ the gradient is given by:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Equation of a Straight Line

$y=m x+c \quad$ where m is the gradient and c is the $y-$ intercept
$y-b=m(x-a) \quad$ where (a, b) is any point on the line and m is the gradient

Quadratic Equations

The roots of the quadratic equation $a x^{2}+b x+c=0$ are given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

For the quadratic equation $a x^{2}+b x+c=0$ the discriminant is defined by $b^{2}-4 a c$

If $b^{2}-4 a c<0$ the quadratic equation has zero solutions / roots
If $b^{2}-4 a c=0$ the quadratic equation has one solution $/$ root
If $b^{2}-4 a c>0$ the quadratic equation has two solutions / roots

Graphs of Quadratic Functions

For the quadratic $a x^{2}+b x+c$ written in the form $(x+p)^{2}+q$ the co-ordinates of the turning point is $(-p, q)$. For example, for $y=(x-3)^{2}+4$, the turning point is $(3,4)$.

Rules for Indices

$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{-m}=\frac{1}{a^{m}}$
$a^{0}=1$

Trigonometry

The Sine Rule
For any triangle with angles A, B \& C and corresponding sides a, b \& c we have
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \quad$ or $\quad \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

The Cosine Rule
For any triangle with angles A, B \& C and corresponding sides a, b \& c we have
$a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A$
This form of the Cosine Rule is best used for finding lengths

We can also write the Cosine Rule as
$\operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
This form of the Cosine Rule is best used for finding angles

The Area of a Non-Right Triangle
The area of any triangle ABC is given by Area $=\frac{1}{2} a b \operatorname{Sin} C$

b

When using this formula notice that you need to have any two sides of a triangle and the angle between those sides

Trigonometric Identities
$\frac{\sin x}{\cos x}=\tan x$

$$
\sin ^{2} x+\cos ^{2} x=1
$$

Note that $\sin ^{2} x$ means $(\sin x)^{2}$ not $\sin \left(x^{2}\right)$

Volume

Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a pyramid $=\frac{1}{3} x$ base area x height
Volume of a sphere $=\frac{4}{3} \pi r^{3}$

