

National 5 Maths Formula List

Pythagoras' Theorem

Pythagoras' Theorem states that for any right-angled triangle the 'sum of the squares of the two short sides equals the square of the long side.'

For the above triangle with short sides *a* and *b*, and long side *c* we have $a^2 + b^2 = c^2$

<u>Circles</u>

CircumferenceArea $C = \pi d$ where d is the diameter $A = \pi r^2$ where r is the radiusArc LengthSector AreaArc length = $\frac{angle}{360} x \pi d$ Sector area = $\frac{angle}{360} x \pi r^2$

Vectors

Magnitude (Length) of a Vector

For the vector $\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, the magnitude of \underline{a} , denoted $|\underline{a}|$, is given by $|\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

mymathsguy.com

Comparing Data

Interquartile Range = $Q_3 - Q_1$

Semi-Interquartile Range =
$$\frac{Q_3 - Q_1}{2}$$

Standard Deviation

S. D. =
$$\sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
 S. D. = $\sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$

Where n is the number of data points in the set, \bar{x} is the mean, and \sum means 'the sum of', indicating to add the values together

Straight Lines

Gradient of a Straight Line

For any two points on a line (x_1, y_1) and (x_2, y_2) the gradient is given by:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Equation of a Straight Line

y = mx + c where *m* is the gradient and *c* is the *y* – intercept

y - b = m(x - a) where (a, b) is any point on the line and m is the gradient

Quadratic Equations

The roots of the quadratic equation $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For the quadratic equation $ax^2 + bx + c = 0$ the discriminant is defined by $b^2 - 4ac$

If $b^2 - 4ac < 0$ the quadratic equation has zero solutions / roots If $b^2 - 4ac = 0$ the quadratic equation has one solution / root If $b^2 - 4ac > 0$ the quadratic equation has two solutions / roots

Graphs of Quadratic Functions

For the quadratic $ax^2 + bx + c$ written in the form $(x + p)^2 + q$ the co-ordinates of the turning point is (-p, q). For example, for $y = (x - 3)^2 + 4$, the turning point is (3, 4).

Rules for Indices

 $a^{m} x a^{n} = a^{m+n}$ $a^{m} \div a^{n} = a^{m-n}$ $(a^{m})^{n} = a^{mn}$ $a^{-m} = \frac{1}{a^{m}}$ $a^{0} = 1$

Trigonometry

The Sine Rule

For any triangle with angles A, B & C and corresponding sides a, b & c we have

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ or $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

The Cosine Rule

For any triangle with angles A, B & C and corresponding sides a, b & c we have $a^2 = b^2 + c^2 - 2bc \cos A$

This form of the Cosine Rule is best used for finding lengths

We can also write the Cosine Rule as

$$Cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

This form of the Cosine Rule is best used for finding angles

The Area of a Non-Right Triangle

The area of any triangle ABC is given by $Area = \frac{1}{2}ab Sin C$

When using this formula notice that you need to have any two sides of a triangle and the angle between those sides

Trigonometric Identities

 $\frac{\sin x}{\cos x} = \tan x$

 $sin^2x + cos^2x = 1$

Note that $sin^2 x$ means $(sin x)^2$ not $sin(x^2)$

Volume

Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a pyramid = $\frac{1}{3}x$ base area x height Volume of a sphere = $\frac{4}{3}\pi r^3$

