
POMDPs: Partically Observable
Markov Decision Processes

JULIA ACADEMY: POMDPS.JL
Decision Making Under Uncertainty

19/24



20/24

What is a POMDP?
Definition: POMDP. A Partially observable Markov decision process (POMDP) is an MDP
with state uncertainty—meaning we cannot know the true state, only a belief about the true
state using observations.

• Formally, a POMDP is defined by the following:

Table: MDP Problem Formulation: 〈S, A, O, T, R, O, γ〉

Variable Description POMDPs Interface

S State space POMDPs.states

A Action space POMDPs.actions

O Observation space POMDPs.observations

T (s′ | s, a) Transition function POMDPs.transition

R(s, a) Reward function POMDPs.reward

O(o | s′) Observation function POMDPs.observation

γ ∈ [0, 1] Discount factor POMDPs.discount

Remember, a POMDP is a problem formulation and not an algorithm.



21/24

How are POMDPs different than MDPs?

• A POMDP2 is an MDP with state uncertainty

MDP: 〈S, A, T, R, γ〉
POMDP: 〈S, A, O, T, R, O, γ〉

• The agent receives an observation of the current state rather than the true
state (potentially imperfect observations)

• Using past observations, the agent builds a belief of their underlying state
– Which can be represented by a probability distribution over true states

2“Partially observable” is key in understanding beliefs.



22/24

Example POMDP: Crying Baby Problem

st st+1

ot

rt

atFeed

Reward

Hungry

Crying

Figure: The crying baby POMDP.

• A simple POMDP with 2 states,
2 actions, and 2 observations:

S = {hungry, full}
A = {feed, ignore}
O = {crying, quiet}

• We cannot directly tell if the
baby is truly hungry, but we can
observe that it’s crying and
update our belief about the true
state using this information.



23/24

QuickPOMDPs: Crying Baby

using POMDPs, POMDPModelTools, QuickPOMDPs

@enum State hungry full

@enum Action feed ignore

@enum Observation crying quiet

pomdp = QuickPOMDP(

states = [hungry, full], # 𝒮
actions = [feed, ignore], # 𝒜
observations = [crying, quiet], # 𝒪
initialstate = [full], # Deterministic

discount = 0.9, # γ

transition = function T(s, a)

if a == feed

return SparseCat([hungry, full], [0, 1])

elseif s == hungry && a == ignore

return SparseCat([hungry, full], [1, 0])

elseif s == full && a == ignore

return SparseCat([hungry, full], [0.1, 0.9])

end

end,

observation = function O(s, a, s′)

if s′ == hungry

return SparseCat([crying, quiet], [0.8, 0.2])

elseif s′ == full

return SparseCat([crying, quiet], [0.1, 0.9])

end

end,

reward = (s,a)->(s == hungry ? -10 : 0) + (a == feed ? -5 : 0)

)

• This codea defines the entire Crying Baby
POMDP using QuickPOMDPs.jl

– Just a sneak-peek: we’ll walk through
this in detail in the Pluto notebooks

st st+1

ot

rt

atFeed

Reward

Hungry

Crying

aYes, this is self-contained—copy and paste it into a notebook or REPL!



24/24

POMDP solvers

A number of ways to solve POMDPs are implemented in the following packages.

Table: POMDP Solution Methods

Package Online/Offline State Spaces Actions Spaces Observation Spaces

QMDP.jl Offline Discrete Discrete Discrete
FIB.jl Offline Discrete Discrete Discrete
BeliefGridValueIteration.jl Offline Discrete Discrete Discrete
SARSOP.jl Offline Discrete Discrete Discrete
BasicPOMCP.jl Online Continuous Discrete Discrete
ARDESPOT.jl Online Continuous Discrete Discrete
MCVI.jl Offline Continuous Discrete Continuous
POMDPSolve.jl Offline Discrete Discrete Discrete
IncrementalPruning.jl Offline Discrete Discrete Discrete
POMCPOW.jl Online Continuous Continuous Continuous
AEMS.jl Online Discrete Discrete Discrete
PointBasedValueIteration.jl Offline Discrete Discrete Discrete

When defining your problem, the type of state, action, and observation space is very important!

https://github.com/JuliaPOMDP/QMDP.jl
https://github.com/JuliaPOMDP/FIB.jl
https://github.com/JuliaPOMDP/BeliefGridValueIteration.jl
https://github.com/JuliaPOMDP/SARSOP.jl
https://github.com/JuliaPOMDP/BasicPOMCP.jl
https://github.com/JuliaPOMDP/ARDESPOT.jl
https://github.com/JuliaPOMDP/MCVI.jl
https://github.com/JuliaPOMDP/POMDPSolve.jl
https://github.com/JuliaPOMDP/IncrementalPruning.jl
https://github.com/JuliaPOMDP/POMCPOW.jl
https://github.com/JuliaPOMDP/AEMS.jl
https://github.com/JuliaPOMDP/PointBasedValueIteration.jl

