
Advanced

Multithreading

in C/C++

(Pthreads)

• Thread Management

• Pausing & Resuming Threads

• Thread Pools/Work Crew Model

• Thread Barriers

• Wait-Queue Model

• Event Pair Synchronization

• Thread Monitor

• Solving Reader Writer Problem

• Solving Bridge Problem

• Strict Alternation using Monitor

• Producer-Consumer Problem

• Assembly Line Scheduling

• Building Timers using Threads*

• Designing Multi-Threaded TCP Server

• Deadlock Detection and Prevention

• FiFo Semaphores

• Inter-Process Synchronization using Semaphores

• Forking a Multi-Threaded Program

Pre-Requisite :

Must have Completed Prequel Course

Or

Have Good knowledge of Mutexes &

CVs

Thread Synchronization Advanced → Thread Management

• In order to implement advanced concepts based on multi-threading, it is required that developer has to have a full control

over an execution Unit – a thread

• Until now, all we had was thread_handle pthread_t using which developer could perform certain operations on a thread

• Cancelling the thread

• Joining the thread

• In order to implement advanced concepts based on multi-threading, Developer need to track the complete status of each

thread

• Is the thread executing or blocked ?

• Is the thread blocked on CV, then on which CV ?

• Is thread a reader thread or writer thread ?

• What are the resources already allocated to the thread ?

• Is the thread Queued up in the thread pool ?

• etc

• We can’t achieve tracking the complete status of the track in our application using just a thread_handle, we need a data

structure with several members which represents a thread

• Using this wrapper thread data structure, we shall be able to manage our threads, Implement Adv thread Sync Data

structures easily and in a much manageable way

Thread Synchronization Advanced → Thread Management

Reference : MultithreadingBible/ThreadSyncAdv/threadlib/threadlib.h

MultithreadingBible/ThreadSyncAdv/threadlib/threadlib.c

Course that we will build in this course :

MultithreadingBible/ThreadSyncAdv/threadlib/CourseDev/section_threadmgmt/threadlib.h

MultithreadingBible/ThreadSyncAdv/threadlib/CourseDev/section_threadmgmt/threadlib.c

typedef struct thread_{

char name[32];

bool thread_created;

pthread_t thread;

void *arg;

void *(*thread_fn)(void *);

pthread_attr_t attributes;

} thread_t;

APIs :

thread_t *

thread_create (thread_t *thread, char *name);

void

thread_set_thread_attribute_joinable_or_detached(

thread_t *thread, bool joinable) ;

void

thread_run (thread_t *thread, void *(*thread_fn)(void *), void *arg);

Dir : MultithreadingBible/ThreadSyncAdv/threadlib/CourseDev/section_thread_pause

Thread Synchronization → Pausing and Resuming Threads

➢ Pausing and Resuming a Thread in the middle of its execution is a common scenario in the

Multi-threading World

➢ Pausing and Resuming Threads :

➢ A GC thread need to be paused, because application has triggered some high priority thread

➢ A thread sending network packets into the network may want to be paused if network is congested

➢ We Can’t pause a thread just at any random instruction in its execution flow, it will lead to the problem

of invariants

(Same reasoning as cancelling the thread, revise)

➢ Just like we have Cancellation points, we need to have Pause points – Instructions where if thread is

paused then problem of invariants won’t occur

➢ Cancellation points and Pause points usually overlap

➢ Identifying the pause points as per the same logic as cancellation points

➢ POSIX standard, like Thread Cancellation, do not provide inbuilt support for Pausing and Resuming threads,

it is something we need to built ourself using Mutex and CVs

Thread Synchronization → Pausing and Resuming Threads → Requirements

➢ Developer must be able to mark the thread to get paused

void

thread_pause(thread_t *thread);

➢ Once the thread is marked to pause, thread must get pause at the pause-points

void

thread_test_and_pause(thread_t *thread);

➢ Developer should be able to resume the paused thread

void

thread_resume(thread_t *thread);

➢ When thread wakes up (resumes), thread must invoke an additional registered fn immediately

on wake up before it actually continues with work where it had left before pause

void

thread_set_pause_fn(thread_t *thread,

void *(*thread_pause_fn)(void *),

void *pause_arg);

Thread Synchronization → Pausing and Resuming Threads → Data Structure Enhancements

➢ typedef struct thread_{

. . .

. . .

➢ /* Fn to be invoked just before pausing the thread */

➢ void *(*thread_pause_fn)(void *);

➢ /* Arg to be supplied to pause fn */

➢ void *pause_arg;

➢ /* track thread state */

➢ uint32_t flags;

➢ /* update thread state mutually exclusively */

➢ pthread_mutex_t state_mutex;

➢ /* cv on which thread will block itself*/

➢ pthread_cond_t cv;

➢ . . .

➢ . . .

➢ } thread_t;

• Update thread_create()

Thread Synchronization → Pausing and Resuming Threads → Data Structure Enhancements

➢ typedef struct thread_{

. . .

uint32_t flags;

. . .

➢ } thread_t;

/* When the thread is running and doing its work as normal */

#define THREAD_F_RUNNING (1 << 0)

/* When the thread has been marked to pause, but not paused yet */

#define THREAD_F_MARKED_FOR_PAUSE (1 << 1)

/* When thread is blocked (paused) */

#define THREAD_F_PAUSED (1 << 2)

/* When thread is blocked on CV for reason other than paused */

#define THREAD_F_BLOCKED (1 << 3)

Imagine you are super rich, and there are couple of
servants always in ready state waiting for your

next commands to do your work.
Life will be going to be easy, no !

Dir : MultithreadingBible/ThreadSyncAdv/threadlib/CourseDev/section_thread_pools

Thread Synchronization → Thread Pools

➢ A Thread Pool is a parking space for blocked threads (but ready to resume)

➢ Thread pool can be modeled as any data structure (list, tree, etc) which can hold thread_t objects

➢ A thread in a thread pool is in ready-to-use state, just like you have your cars parked in your garages

are in ready-to-use state

➢ Threads blocked on CVs are placed (stored) in thread pools for later use

➢ When appln needs to do a work W, it picks up an unused thread from threads pool, assign

W to the thread and signal the thread

➢ A thread is placed back in thread pool after it has completed its work

➢ An application, in init phase, can create some pre-defined number of threads in thread pool

➢ This software pattern is also called as Worker-Crew Pattern

➢ In this Section, we shall be going to implement a thread-pool functionality to our threadlib library

Thread Synchronization → Thread Pools → Benefits

➢ Benefit

➢ Application don’t have to call pthread_create() to create new thread (performance improvement)

➢ pthread_create() is an expensive call as it is a wrapper over clone() system call

➢ Eg : Network Appln processing incoming pkts in the context of a separate thread

➢ Places an upper bound on number of threads an application can create. Useful in resource constraint

environment

➢ Eg : A thread which has established connection with remote host can be re-used again & again from

thread pool without dropping and re-establishing a connection again

Read Wiki :

https://en.wikipedia.org/wiki/Thread_pool

Thread Synchronization → Thread Pools → Design

Appln

T1 T2 T3. . .

w

T1

Fetch

Assign Work

W = f + arg

Execution flow Work finished

T1 park itself

Back to pool

Done !

(optional)

1

2

3 4

5

6

7

Thread Pool

➢ 7 step Process !

➢ Step 1 , 2 and 3 is performed by the application

➢ Step 4, 5, 6 and 7 is performed by the worker thread

Thread Synchronization → Thread Pools → Design

Appln

T1 T2 T3. . .

w

T1

Fetch

Assign Work

W = f + arg

Execution flow Work finished

T1 park itself

Back to pool

Done !

(optional)

1

3 4

5

7

Thread Pool

• We will develop Steps from 1 to 7 in stages

• Steps 1 , 2 & 3 – Stage 1

• Step 4 & 5 – Stage 2

• Step 6 & 7 – Stage 3

• Each stage is a separate fn

6

2

Stage 1

Stage 2

Stage 3

Thread Synchronization → Thread Pools → Data Structure and APIs

typedef struct thread_pool_ {

glthread_t pool_head;

pthread_mutex_t mutex;

} thread_pool_t;

void

thread_pool_init (thread_pool_t *th_pool);

void

thread_pool_insert_new_thread (thread_pool_t *th_pool, thread_t *thread);

thread_t *

thread_pool_get_thread (thread_pool_t *th_pool);

void

thread_pool_dispatch_thread (thread_pool_t *th_pool,

void *(*thread_fn)(void *),

void *arg);

typedef struct thread_{

. . .

glthread_t wait_glue;

. . .

} thread_t;

GLTHREAD_TO_STRUCT(wait_glue_to_thread,

thread_t, wait_glue);

Thread Synchronization → Thread Pools → Implementation

Helper APIs :

/* Part the thread back in thread pool

Algo : 1. Add the thread_t object to thread pool

2. Block on CV

*/

static void

thread_pool_thread_stage3_fn (thread_pool_t *th_pool,

thread_t *thread) ;

/* Run the thread

Assume : Thread has been removed from thread pool already

Algo : 1. If execution unit is not created yet, create it

2. else signal the thread (bcoz thread is blocked on CV)

static void

thread_pool_run_thread (thread_t *thread);

Thread Synchronization → Thread Pools → Implementation

Appln

T1 T2 T3. . .

w

T1

Fetch

Assign Work

W = f + arg

Execution flow Work finished

T1 park itself

Back to pool

Done !

(optional)

1

3 4

5

7

Thread Pool

6

2

Stage 1

Stage 2

Stage 3

void

thread_pool_dispatch_thread (thread_pool_t *th_pool,

void *(*thread_fn)(void *),

void *arg);

➢ Try yourself !

➢ Step 1 to 6 (7 later)

• Stage 2 is all about executing appln’s thread_fn on

appln’s arg (performing appln’s given task)

• We need to figure out a way how thread can know

that it has to execute stage3 fn after stage 2

• There should be some data structure which stores the

info regarding how thread should execute through

stages !

typedef struct thread_execution_data_ {

void *(*thread_stage2_fn)(void *);

void *stage2_arg;

void (*thread_stage3_fn)(thread_pool_t *, thread_t *);

thread_pool_t *thread_pool;

thread_t *thread;

} thread_execution_data_t;

void

thread_pool_dispatch_thread (thread_pool_t *th_pool,

void *(*thread_fn)(void *),

void *arg);

Thread Synchronization → Thread Pools → Implementation

Thread Synchronization → Thread Pools → Data Structure and APIs

typedef struct thread_execution_data_ {

void *(*thread_stage2_fn)(void *);

void *stage2_arg;

void (*thread_stage3_fn)(thread_pool_t *, thread_t *);

thread_pool_t *thread_pool;

thread_t *thread;

} thread_execution_data_t;

static void *

thread_fn_execute_stage2_and_stage3 (void *arg) {

thread_execution_data_t *thread_execution_data =

(thread_execution_data_t *)arg;

while (1) {

/* Stage 2 : User defined function with user defined argument*/

thread_execution_data->thread_stage2_fn (thread_execution_data->stage2_arg);

/* Stage 3 : Queue the thread in thread pool and block it*/

thread_execution_data->thread_stage3_fn (thread_execution_data->thread_pool,

thread_execution_data->thread);

}

}

• For every use of thread from thread-pool, appln needs to change the stage 2 fn and arg before signaling the blocked thread

Appln

T1 T2 T3. . .

w

T1

Fetch

Assign Work

W = f + arg

Execution flow Work finished

T1 park itself

Back to pool

Done !

(optional)

1

3 4

5

7

Thread Pool

6

2

Stage 1

Stage 2

Stage 3

void

thread_pool_dispatch_thread (thread_pool_t *th_pool,

void *(*thread_fn)(void *),

void *arg, bool block_caller);

➢ Step 7

Thread Synchronization → Thread Pools → Implementing Step 7

• Application should block until the worker thread completes

its task and park itself in thread pool

• Hint : Use Zero Semaphore

➢ You are starting a trip with your friends; you wait at some point to

enable rest of your friends to join you

Thread Synchronization → Thread Barrier → Introduction

➢ Thread Barrier is a thread synchronization data structure which blocks all threads at a particular line of code until some

specified # of threads arrives at the barrier point

➢ In cases where you must wait for a number of tasks to be completed before an overall task can proceed, barrier

synchronization can be used

➢ Practical use case : IDM appln downloads the big files through multiple downloader threads. When all threads complete,

then only application reports file download success

thread_barrier_barricade(barrier)

POSIX API provide in built support to work with

Thread barriers (pthread_barrier_t),

but it is no fun if we don’t know how to implement one

from scratch !

Thread Synchronization → Thread Barrier → Thread Barrier Data Structure

➢ Thread Barrier works on the concept of relay

➢ A signaled thread, signaling the other blocked thread to resume – creating a chain of signals

➢ When we get stuck at barricade, this is how we pass the barricade when allowed by authority – one by one ! No ?

thread_barrier_barricade(barrier)

typedef struct th_barrier_ {

uint32_t max_count;

uint32_t curr_wait_count;

pthread_cond_t cv;

pthread_mutex_t mutex;

bool is_ready_again;

pthread_cond_t busy_cv;

} th_barrier_t

void

thread_barrier_init (th_barrier_t *barrier, uint32_t threshold);

Thread Synchronization → Thread Barrier → APIs

void

thread_barrier_init (th_barrier_t *barrier, uint32_t threshold_count);

void

thread_barrier_wait (th_barrier_t *barrier);

void

thread_barrier_destroy (th_barrier_t *barrier);

https://github.com/sachinites/MultithreadingBible

Codes : MultithreadingBible/ThreadBarrier

Thread Synchronization → Thread Barrier → Algorithm

pthread_mutex_lock

(&barrier->mutex);

Is disposition in progress ?

barrier->is_ready_again ==

true

N

Y

pthread_cond_wait

(&barrier->busy_cv, &barrier->mutex);

Is current thread the last thread

hitting the barrier point ?

barrier->curr_wait_count + 1 ==

barrier->threshold

Y

N

Mark disposition Begin

barrier->is_ready_again = false;

Generate a relay signal

pthread_cond_signal(&barrier->cv);

barrier->curr_wait_count++;

Block the curr thread on the barrier

pthread_cond_wait(&barrier->cv,

&barrier->mutex);

Blocked thread resume

barrier->curr_wait_count--;

If lst thread leaving the barrier point ?

barrier->curr_wait_count == 0

Y

Mark disposition End

barrier->is_ready_again = true;

Allow refrain thread to use barrier if any

pthread_cond_broadcast(&barrier->busy_cv);

pthread_mutex_unlock

(&barrier->mutex);

N

Begin

End

thread_barrier_wait (barrier)

void thread_barrier_wait (barrier)

Thread Synchronization → Event Pair

➢ As the name suggest, Event Pair Data structure is used to implement strict alternation between a pair of threads

➢ We have already implemented strict alternation using semaphores, we would re-implement it again by wrapping the same

concept under formal event pair APIs

T1 T2

• T1 waits after sending a msg

• T1 can send next msg only after

receiving the reply of prev msg

• T2 waits after sending the msg

• T2 can send next msg only after

receiving the reply of prev msg

Thread Synchronization → Wait Queues → Functioning

➢ Wait Queue (WQ) , as the name suggest, is a thread synchronization data structure

➢ WQs holds the thread(s) and keep them in blocked state until some specified condition is met

➢ Used extensively in Linux kernel, we shall be implementing wait-Queues for user space programs

➢ POSIX thread library do not provide inbuilt WQs, we need to build one ourselves from scratch for our convenience

Eg : Thread starts sending the pkts to 100.1.1.1 as soon as route to 100.1.1.1 becomes available in rt table, until then it stays blocked

Eg : Thread(s) are waiting to read the disk until disk becomes ready to read

➢ We can implement the above logic with CV and Mutexes alone, without using WQs but then developer has to deal with

Mutex and CVs

➢ WQs simplifies , developer don’t have to write any thread synch code explicitly in his appln

➢ Wait Queues hide all the thread synchronization complexity , abstracting away the users from dealing with mutexes & CVs

➢ Same is true with thread barriers if you had noticed

Thread Synchronization → Wait Queues → Usage

wait_queue_test_and_wait (wq,

is_disk_not_ready())

read_disk(disk);

wait_queue_test_and_wait (wq,

is_rt_present (100.1.1.1))

send_pkt (pkt, 100.1.1.1);

Appln CodeAppln Code

➢ As many different Application specific conditions, as many wait Queues to be defined

➢ Nothing new, just doing the same thing in slightly another way to implement WQs

Thread Synchronization → Wait Queues → Recap

➢ Almost all thread synchronization data structures boils down to producer consumer or variants problem !

➢ Nothing new, just doing the same thing in slightly another way to implement WQs

pthread_mutex_lock(&mutex);

while (predicate()) {

pthread_cond_wait (&cv, &mutex);

}

execute_cs_on_wake_up ();

pthread_mutex_unlock(&mutex);

Consumer Thread :

General pseudo to block on CV

Producer Thread :

General pseudo to signal on CV

pthread_mutex_lock(&mutex);

if (!predicate()) {

pthread_cond_signal (&cv);

}

pthread_mutex_unlock(&mutex);

Thread Synchronization → Wait Queues → API & Condition Fn

obj – some ptr to application object

. . .

. . .

wait_queue_test_and_wait (WQ ,

condition_fn, (void *)obj) ;

. . .

. . .

• If condition_fn returns true, the calling thread must block

• If condition_fn returns false, all blocked threads on a wait Queue are signaled

• Condition fn is invoked in two modes :

• Lock mode

• Second parameter out_mutex is not null

• Lock the application mutex before checking the condition

• return the locked mutex in second output parameter out_mutex

• return bool – condition result

• Unlock mode

• Second parameter out_mutex is null

• return bool – condition result

bool

condition_fn (void *arg,

pthread_mutex_t **out_mutex) ;

bool is_disk_drive_ready (void *arg,

pthread_mutex_t **out_mutex) {

disk_t *disk = (disk_t *)arg;

if (out_mutex) {

pthread_mutex_lock(&disk->mutex);

*out_mutex = &disk->mutex;

}

return disk->ready;

}

Thread Synchronization → Wait Queues → Data Structure & APIs

typedef struct wait_queue_ {

/* No of threads waiting in a wait-queue*/

uint32_t thread_wait_count;

/* CV on which multiple threads in wait-queue are

blocked */

pthread_cond_t cv;

/* Application owned Mutex cached by wait-queue */

pthread_mutex_t *appln_mutex;

} wait_queue_t;

void

wait_queue_init (wait_queue_t * wq);

thread_t *

wait_queue_test_and_wait (wait_queue_t *wq,

wait_queue_block_fn wait_queue_block_fn_cb,

void *arg);

void

wait_queue_signal (wait_queue_t *wq, bool lock_mutex);

void

wait_queue_broadcast (wait_queue_t *wq, bool lock_mutex);

void

wait_queue_destroy (wait_queue_t *wq);

Condition fn “ fn ptr “ declaration :

typedef bool (*wait_queue_condn_fn)

(void *appln_arg, pthread_mutex_t **out_mutex);

threadlib.h / threadlib.c

Thread Synchronization → Wait Queues → test_and_wait()

void

wait_queue_test_and_wait (

wait_queue_t * wq,

wait_queue_block_fn wait_queue_block_fn_cb,

void *arg) ;

wait_queue_test_and_wait (wq,

is_disk_not_ready, disk)

read_disk(disk);

Appln Code

void

wait_queue_test_and_wait (

wait_queue_t * wq,

wait_queue_block_fn wait_queue_block_fn_cb,

void *arg)

{

bool should_block;

pthread_mutex_t *locked_appln_mutex = NULL;

should_block = wait_queue_block_fn_cb (arg,

&locked_appln_mutex);

wq->appln_mutex = locked_appln_mutex;

while (should_block)

{

wq->thread_wait_count++;

pthread_cond_wait (&wq->cv, wq->appln_mutex);

wq->thread_wait_count--;

should_block = wait_queue_block_fn_cb (arg, NULL);

}

}

pthread_mutex_unlock(

&wq->appln_mutex);

Thread Synchronization → Wait Queues → test_and_wait()

void

wait_queue_test_and_wait (

wait_queue_t * wq,

wait_queue_block_fn wait_queue_block_fn_cb,

void *arg)

{

bool should_block;

pthread_mutex_t *locked_appln_mutex = NULL;

should_block = wait_queue_block_fn_cb (arg,

&locked_appln_mutex);

wq->appln_mutex = locked_appln_mutex;

while (should_block)

{

wq->thread_wait_count++;

pthread_cond_wait (&wq->cv, wq->appln_mutex);

wq->thread_wait_count--;

should_block = wait_queue_block_fn_cb (arg, NULL);

}

}

pthread_mutex_lock(&mutex);

while (predicate(. . .)) {

pthread_cond_wait (&cv, &mutex);

}

execute_cs_on_wake_up ();

pthread_mutex_unlock(&mutex);
General pseudo to block on CV

When Resource is busy

bool is_disk_drive_not_ready (void *arg,

pthread_mutex_t **out_mutex) {

disk_t *disk = (disk_t *)arg;

if (out_mutex) {

pthread_mutex_lock(&disk->mutex);

*out_mutex = &disk->mutex;

}

return disk->ready;

}

Thread Synchronization → Wait Queues → Demo Example

Let’s exercise Wait Queues

Thread Synchronization → Wait Queues → Demo Example → Problem Statement

East
West

North

South

➢ A Thread represents a stream of traffic in a particular dirn towards

the traffic light

➢ Thread stops when traffic lights shows red, moves otherwise

➢ Traffic light operates in all our dirns,one light can be on at a given

time in one dirn

➢ No distinction between yellow light and green light

➢ User Input to change the state of traffic light

Thread Synchronization → Wait Queues → Demo Example → Solution

East
West

North

South

➢ Launch the threads to represents the Moving traffic

➢ Each face of traffic light will have its own WQ. On

this WQ the threads (moving traffic) shall wait

➢ Let’s code !

➢ tr_light.h / tr_light.c

Moving traffic

as running

threads

The moving threads must know :

1. Dirn in which they are moving

2. Their own state : moving or paused

3. The Traffic light Face

typedef struct thread_pvt_data_ {

dirn_t th_dirn;

th_state_t thread_state;

thread_t *thread;

tr_light_t *tr_light;

} thread_pvt_data_t;

Thread Synchronization → Thread Monitors → Introduction

➢ Thread Monitor is , yet another, and powerful thread synchronization data structure

➢ They are used to synchronize threads competing for an access on a shared resource

➢ Every resource has its personal dedicated monitor

➢ Monitors are analogues to traffic police man

➢ Coordinate the threads competing for a resource

➢ Monitor Algorithm is Cooperation Oriented

➢ Monitor is an interface between threads and a resource

➢ Threads has to request monitor that it is interested in resource access

➢ Threads announce to monitor that it is done with the resource and releasing it

➢ Monitors are like protective case for a resource

➢ Monitors keeps a track :

➢ Whether the resource is being accessed by some thread or not

➢ If accessed, then who is/are accessing it

R

M

Thread Synchronization → Thread Monitors → Conflicting Operations

R

➢ Read-Read is not conflicting operations

➢ Monitors should allow multiple reader threads to access the resource

➢ Read-Write are conflicting operations

➢ If reader threads(s) is/are accessing the resource then writer threads must wait

➢ If Writer thread is accessing the resource then reader threads must wait

➢ Write-Write are conflicting operations

➢ If Writer thread is accessing the resource then other writer threads must wait

➢ If Resource is Idle, then any thread requesting the access to the resource must be granted an access

➢ Monitors may internally use Wait-Queues for its implementation

➢ Monitors can help us solve a large variety of complex thread synchronization problems with ease

➢ Reader-Writer Problem

➢ Bridge Problem

M

Thread Synchronization → Thread Monitors → Interactions

R

➢ Threads talk to Monitors to negotiate an access to a resource

➢ Threads do not coordinate amongst themselves (wait n signal)

➢ Monitor is like a middle-man making up arrange marriages !

T1

T2

T3

void

monitor_request_access_permission (

monitor_t *monitor);

void

monitor_inform_resource_released (

monitor_t *monitor);
Multiple requester threads can issue request to monitor

concurrently, to process the request (grant or not) monitor

has to update its internal state in a mutually exclusive way. Therefore

a monitor mutex is required.

pthread_mutex_t monitor_talk_mutex;

M

Thread Synchronization → Thread Monitors → Reader Writer Threads

➢ A developer always knows if he is creating a thread then what is the purpose of the thread

➢ So, threads can be classified as Reader thread or Writer thread

➢ Monitor keeps a track if the resource is being used by a reader thread or writer thread at any given point of time

➢ If a Resource is being accessed by a Reader thread, Monitor grants an access to next requester reader thread

➢ If a Resource is being accessed by a Writer thread, Monitor does not grant an access to next requester reader/writer thread

and puts the requester thread in a wait Queue

R

M

glthread_t writer_thread_wait_q_lstglthread_t reader_thread_wait_q_lst

List of reader threads waiting for an

access to the resource, blocked by

monitor because resource was not available

List of writer threads waiting for an

access to the resource, blocked by

monitor because resource was not available

glthread_t active_threads_in_cs_lst

(list of threads accessing the resource)

