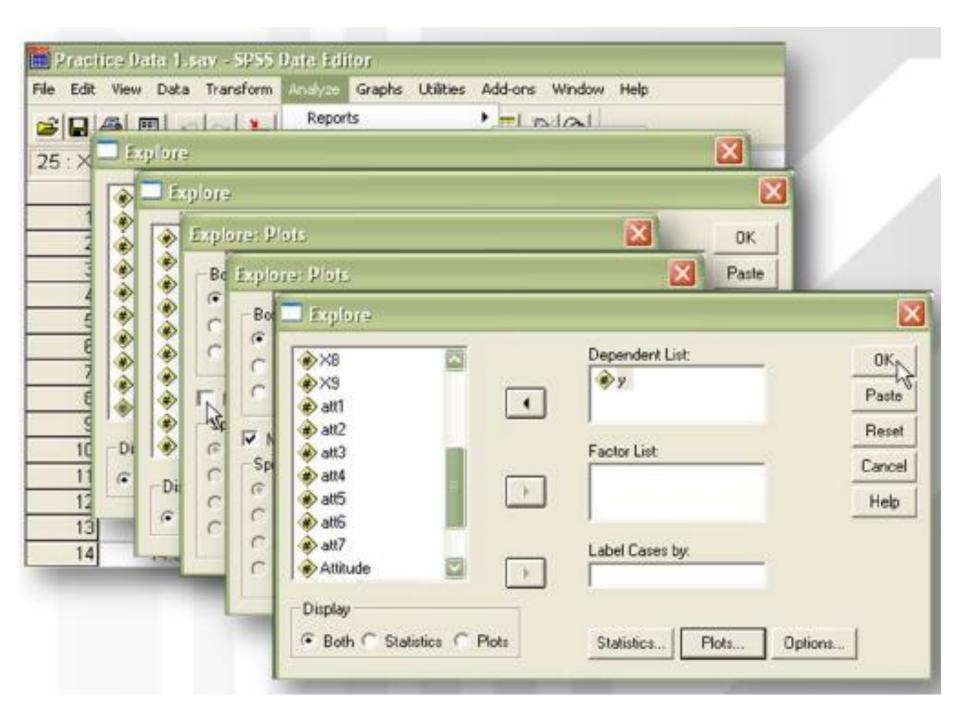
Normality Test


Ismail SA

Normallity Test

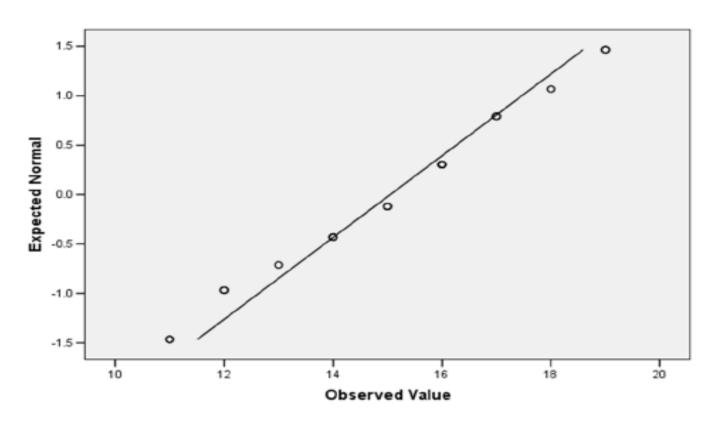
- One of the major assumption for parametric statistics is data in the population must be normally distributed
- How to check whether your data meet the above assumption?
- Use Exploratory Data Analysis (EDA) in SPSS
- SPSS provides two statistics:
 - Kolmogorov-Smirnov
 - Shapiro-Wilk

- You data meet the assumption of normality
 - If the sig-value > alpha (.05)
- In addition, SPSS also produces Normality Plots:
 - Normal Q-Q Plot
 - Detrended Normal Q-Q Plot
- You data can be considered to be normally distributed
 - If majority of the points in the Detrended
 Normal Q-Q plot are within -.3 and +.3
- Data can be considered normal if skewness is between -1 and +1. However values between ±2 are in many cases acceptable (George, D and Mallery, P, 2005)

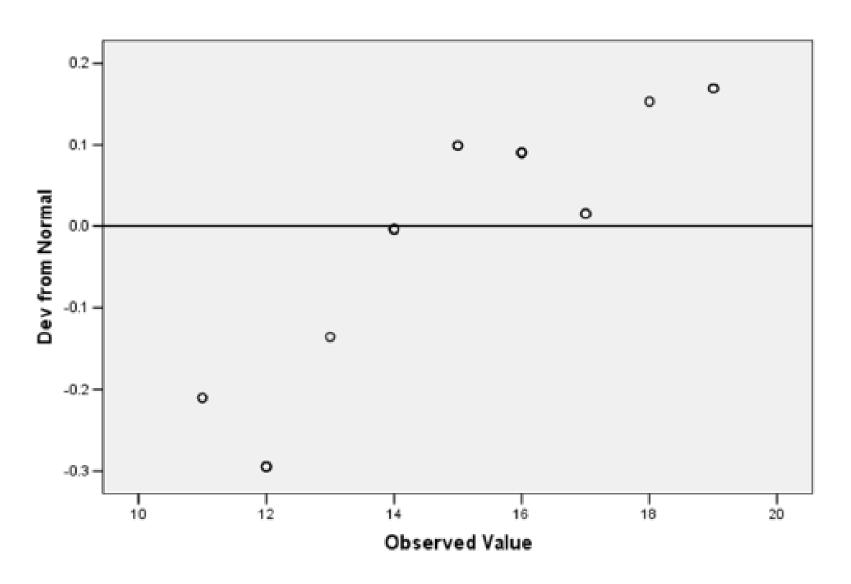
Skew is the tilt (or lack of it) in a distribution. The more common type is right skew, where the tail points to the right. Less common is left skew, where the tail is points left. A common rule-ofthumb test for normality is to run descriptive statistics to get skewness and kurtosis, then divide these by the standard errors. Skew should be within the +2 to -2 range when the data are normally distributed. Some authors use +1 to -1 as a more stringent criterion when normality is critical.

Descriptives

			Statistic	Std. Error
У	Mean		15.0500	.54035
	95% Confidence Interval for Mean	Lower Bound	13.9190	
		Upper Bound	16.1810	
	5% Trimmed Mean		15.0556	
	Median		15.5000	
	Variance		5.839	
	Std. Deviation		2.41650	
	Minimum		11.00	
	Maximum		19.00	
	Range		8.00	
	Interquartile Range		3.50	
	Skewness		139	.512
	Kurtosis		726	.992


Tests of Normality

	Kolmogorov-Smirnov ^a		Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.
У	.153	20	.200*	.952	20	.406


^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Normal Q-Q Plot of job satisfaction

Detrended Normal Q-Q Plot of job satisfaction

Data Set 3:

The above data set comprises the following variables:

Variables	Item
Support from Peers	S1 - S9
Work environment	W1 - W11
Motivation	M1 - M12
Job Performance (Y)	J1 - J13

Question

Test the normality assumption of the following variables:

- Support
- Work
- Motive
- Perform

State your conclusion and justify your answer

Table 1: Normality Test of Study Instruments

Instrument	Kolmogorov	p
Support from Peers		
Work environment		
Motivation		
Job Performance		

Normality Test

Ismail SA

Normality Test

Ismail SA