
Offensive API
SECURITY
Bootcamp

API Attack Surface is
MASSIVE

Why API?

Bugcrowd API Targets
-> 289

Hackerone API Targets
-> 355

API Bug Reports – URI
(Unrestricted Resource Consumption)

API Bug Reports - BLI

API Bug Reports - IDOR

API Bug Reports – IDOR 2

API Bug Reports - BOLA

API Bug Reports – BFLA

API Bug Reports – SSRF

API Bug Reports – SSRF

API Bug Reports – Improper Inventory Management

https://owasp.org/API-Security/editions/2023/en/0xa9-improper-inventory-management/

Overview of API and Importance

•An Application Programming Interface
(API) is a set of rules and protocols that
allows different software applications to
communicate and interact with each
other.

• APIs serve as the building blocks that
enable developers to access specific
features or data from a service or
platform without having to understand
its internal workings.

•The importance of APIs lies in their
ability to foster interoperability,
scalability, and innovation.

Purpose and
Importance of
Securing APIs
Since APIs act as a gateway between
different applications and systems, they are
prime targets for cyberattacks. Failure to
adequately secure APIs can lead to various
risks:

• Data Breaches
• Identity and Authentication Attacks
• Denial of Service (DoS) and Distributed

Denial of Service (DDoS) Attacks
• Man-in-the-Middle (MitM) Attacks
• API Abuse

Case Studies of Attacks
on APIs in the Wild
In 2017, Equifax, one of the major credit reporting agencies, suffered a
massive data breach that exposed the personal information of over
143 million individuals. The breach occurred due to a vulnerability in
an API used to interact with the company's website.

In 2018, Cambridge Analytica, a political consulting firm, harvested
personal data from millions of Facebook users through an
unauthorized API access. This incident highlighted the importance
of controlling access and implementing stringent data sharing
policies.raph text

These case studies underscore the critical need for implementing robust API security
measures to protect against various cyber threats

In 2018, security researchers
discovered a flaw in Tinder's
API that allowed attackers to
triangulate the exact location
of users. This incident raised
concerns about user privacy
and the potential risks
associated with improperly
secured APIs.

GRAPHQL REST

SOAP

REST API
REST (Representational State Transfer):
REST is an architectural style for
designing networked applications, and
it is widely used for building APIs.

RESTful APIs are based on a set of
constraints that leverage HTTP
methods and status codes for
communication between clients and
servers.

REST APIs use simple and intuitive URLs
to represent resources, and they
support various data formats like JSON
and XML.

SOAP API SOAP (Simple Object Access Protocol):
SOAP is a protocol for exchanging
structured information in the
implementation of web services.

It uses XML to define the message
format and relies on HTTP, SMTP, TCP,
and other transport protocols for
message delivery.

SOAP APIs are considered more rigid
and complex compared to REST APIs
due to their reliance on XML and a set
of strict standards.

GRAPHQL
GraphQL:

GraphQL is a query language for
APIs developed by Facebook.

Unlike REST and SOAP, GraphQL
allows clients to request only the
specific data they need, making it
more flexible and efficient in data

retrieval.

With GraphQL, clients can define
the shape of the data they want,
and the server responds with the

exact data in a single request.

SOAPREST GRAPHQL

• Social Media APIs: Facebook, Twitter,
and Instagram

• E-commerce APIs: APIs for online
marketplaces, like Amazon and eBay

• IoT (Internet of Things) APIs: control
smart devices, such as thermostats,
smart home assistants, and
wearables.

USE CASES

• Enterprise Web Services:News
aggregators, blogging platforms, and
content-heavy websites

• Financial Services:transactions, account
management, and data retrieval.

• Government Services:tax filing, social
security benefits, and online permit
applications.

• Content-Rich Applications: News
aggregators, blogging platforms, and
content-heavy websites

• Personalized Experiences: e-commerce
platforms

• Data Aggregation:E-commerce Product
Catalog

API Top 10
Risks

Example: A large delivery provider built an API that allowed an
authorized user to access all their shipments, delivery status,
and account information. The problem was that even though

this API required authentication, with minimal tweaks to the API
requests, it was possible to access other user’s data and harvest

that information.

Broken object level authorization (BOLA) vulnerabilities
exist when user A can access user B’s data due to errors
in the business logic of the application or in the process
of authorizing data (or lack thereof).

BOLA is the single most common, and often most
serious, vulnerability for APIs.

When a user sends an API request, they try to access
one or multiple values (objects). When authorization

works correctly, a given user can only access the
objects they have been granted access to.

When that's not the case, hackers can modify API calls
to act like they are another user and access sensitive
data related to that account.

1) Broken Object Level Authorization

Broken authentication vulnerabilities occur when an API incorrectly
verifies the identity of a user, which may result in the exposure of
resources, functionalities, or sensitive data to the attacker.

This OWASP vulnerability refers to a lack of authentication at the API
layer, authentication methods that use weak password policies, or
flawed authentication mechanisms that hackers can exploit.

Some of the broken authentication vulnerabilities that you should
guard your API against include:
• Credential stuffing
• Dictionary attacks
• Lack of limits on failed logins

2) Broken Authentication

Example: A hacker found it was possible
to request password resets from a fitness

platform via APIs supplying a phone
number. The hacker iterated through
several potential phone combinations
until he found out those that worked.
When the app sent a 4-digit password
reset code, he brute-forced the codes,
gaining access to different accounts.

Similar to "Broken Object Level Authorization,"
this risk focuses on improper access controls
at the property level of an object or resource.

Example: An API endpoint that allows
users to read certain properties of an

object but lacks proper checks to prevent
them from accessing sensitive

properties..

3) Broken Object Property Level
Authorization

This risk involves APIs that
can be abused to consume
excessive resources, causing
denial of service or resource
exhaustion.

4) Unrestricted Resource
Consumption

Example: An API endpoint that allows
unauthenticated users to perform

computationally expensive operations,
leading to server overload and

performance degradation.

Function-level authorization
refers to the permissions
required to execute specific
API functions. If not properly
implemented, unauthorized
users might execute critical
functions.

5) Broken Function Level
Authorization

Example: A popular dating app enforced several
user access and functionality restrictions within the

app. However, since the app used a set of APIs to
interact with the backend, it was possible for users

to change account settings and permissions,
enabling them to turn on premium features without

paying..

This risk is related to APIs
that grant unrestricted
access to critical business
processes or flows, leading
to unauthorized access to
sensitive operations.

6) Unrestricted Access to Sensitive
Business Flows

Example: An airline company offers online ticket purchasing with
no cancellation fee. A user with malicious intentions books 90%

of the seats of a desired flight.
A few days before the flight the malicious user canceled all the
tickets at once, which forced the airline to discount the ticket

prices in order to fill the flight.
At this point, the user buys herself a single ticket that is much

cheaper than the original one.

More common - the following concepts encourage developers
to access an external resource based on user input: Webhooks,
file fetching from URLs, custom SSO, and URL previews.

More dangerous - Modern technologies like cloud providers,
Kubernetes, and Docker expose management and control
channels over HTTP on predictable, well-known paths. Those
channels are an easy target for an SSRF attack.

Server-Side Request Forgery (SSRF) flaws
occur when an API is fetching a remote
resource without validating the user-
supplied URL.

7) Server-Side Request Forgery (SSRF)
A social network allows users to upload profile pictures. The user can
choose either to upload the image file from their machine, or provide
the URL of the image. Choosing the second, will trigger the following API
call:

POST /api/profile/upload_picture

{
"picture_url": "http://example.com/profile_pic.jpg"

}
An attacker can send a malicious URL and initiate port scanning within
the internal network using the API Endpoint.

{
"picture_url": "localhost:8080"

}
Based on the response time, the attacker can figure out whether the
port is open or not.

8) Security Misconfiguration
Security misconfigurations
occur when APIs are not
properly configured, leaving
them vulnerable to attacks

A social network website offers a "Direct Message" feature
that allows users to keep private conversations.

To retrieve new messages for a specific conversation, the
website issues the following API request (user interaction is
not required):

GET
/dm/user_updates.json?conversation_id=1234567&cursor=GRl
Fp7LCUAAAA

Because the API response does not include the Cache-Control
HTTP response header, private conversations end-up cached
by the web browser, allowing malicious actors to retrieve
them from the browser cache files in the filesystem.

9) Improper Inventory Management
This risk involves APIs
that are inadequately
tracked or managed,
leading to the
exposure of
deprecated or
insecure APIs.

Example: A company's API inventory includes multiple APIs with outdated
security protocols, leaving them exposed to known vulnerabilities.

10) Unsafe Consumption of APIs
This risk occurs when client applications consume APIs insecurely,
potentially leading to data exposure or unauthorized access.

An attacker can prepare a git repository named

'; drop db;--.

Now, when an integration from an attacked application is
done with the malicious repository, SQL injection payload is
used on an application that builds an SQL query believing
the repository's name is safe input.

Parsing API Json Output to
make “greppable”

“Attack Surface
Mapper”
for API’s

“Building Fuzzer”
for API’s

Mindmapping
https://dsopas.github.io/MindAPI/play/

Checklist

Thank you

