Line	After evidence was obtained in the 1920s that	(1).The passage is primarily concerned with
	the universe is expanding, it became reasonable to	(A) defending a controversial approach
	ask: Will the universe continue to expand	(B) criticizing an accepted view
	indefinitely, or is there enough mass in it for the	(C) summarizing research findings
(5)	mutual attraction of its constituents to bring this	
	expansion to a halt? It can be calculated that the	(D) contrasting competing theories
	critical density of matter needed to brake the expansion	(E) describing an innovative technique
	and "close" the universe is equivalent to	
	three hydrogen atoms per cubic meter. But the	(2).The authors' study indicates that, in comparison with
(10)	density of the observable universe—luminous	the outermost regions of a typical spiral galaxy, the region
	matter in the form of galaxies—comes to only a	int outcinios regions of a typical spiral galaxy, the region
	fraction of this. If the expansion of the universe is	Just outside the nucleus can be characterized as having
	to stop, there must be enough invisible matter in	(A) higher rotational velocity and higher luminosity
	the universe to exceed the luminous matter in	(B) lower rotational velocity and higher luminosity
(15)	density by a factor of roughly 70.	(C) lower rotational velocity and lower luminosity
	Our contribution to the search for this "missing	(D) similar rotational velocity and higher luminosity
	matter" has been to study the rotational velocity of	(F) similar rotational velocity and similar luminosity
	galaxies at various distances from their center of	
(20)	outside the bright nucleus of a tunical spiral splaw.	
(20)	luminosity falls off rapidly with distance from the	(3). The authors' suggestion that "as much as 90 percent of
	center. If luminosity were a true indicator of mass	the mass of the universe is not radiating at any
	most of the mass would be concentrated toward	wavelength with enough intensity to be detected on the
	the center Outside the nucleus the rotational	Earth" (lines 34–37) would be most weakened if which of
(25)	velocity would decrease geometrically with	the following were discovered to be true?
()	distance from the center, in conformity with	(A) Spiral galaxies are loss sommen than types of galaxies
	Kepler's law. Instead we have found that the	(A) Spiral galaxies are less common than types of galaxies
	rotational velocity in spiral galaxies either remains	that contain little nonluminous matter.
	constant with increasing distance from the center	(B) Luminous and nonluminous matter are composed of
(30)	or increases slightly. This unexpected result	the same basic elements.
	indicates that the falloff in luminous mass with	(C) The bright nucleus of a typical spiral galaxy also
	distance from the center is balanced by an	contains some nonluminous matter.
	increase in nonluminous mass.	(D) The density of the observable universe is greater than
	Our findings suggest that as much as 90 percent	most providus estimates have suggested
(35)	of the mass of the universe is not radiating at any	
	wavelength with enough intensity to be detected	(E) Some galaxies do not rotate or rotate too slowly for
	on the Earth. Such dark matter could be in the	their rotational velocity to be measured.
	form of extremely dim stars of low mass, of large	
()	planets like Jupiter, or of black holes, either small	
(40)	or massive. While it has not yet been determined	
	whether this mass is sufficient to close the	
	universe, some physicists consider it significant	
	that estimates are converging on the critical value.	

Line	After evidence was obtained in the 1920s that	(4).It can be inferred from information presented in the
	the universe is expanding, it became reasonable to	passage that if the density of the universe were equivalent
	ask: Will the universe continue to expand	to significantly less than three hydrogen atoms per cubic
	indefinitely, or is there enough mass in it for the	mator which of the following would be true as a
(5)	mutual attraction of its constituents to bring this	meter, which of the following would be true as a
	expansion to a halt? It can be calculated that the	consequence?
	critical density of matter needed to brake the expansion	(A) Luminosity would be a true indicator of mass.
	and "close" the universe is equivalent to	(B) Different regions in spiral galaxies would rotate at the
(three hydrogen atoms per cubic meter. But the	same velocity.
(10)	density of the observable universe—luminous	(C) The universe would continue to expand indefinitely.
	matter in the form of galaxies—comes to only a	(D) The density of the invisible matter in the universe
	traction of this. If the expansion of the universe is	(b) The density of the more than 70 times the density of the
	to stop, there must be enough invisible matter in	would have to be more than 70 times the density of the
(15)	density by a factor of roughly 70	luminous matter.
(13)	Our contribution to the search for this "missing	(E) More of the invisible matter in spiral galaxies would
	matter" has been to study the rotational velocity of	have to be located in their nuclei than in their outer
	galaxies at various distances from their center of	regions.
	rotation. It has been known for some time that	
(20)	outside the bright nucleus of a typical spiral galaxy	(5) The authors propose all of the following as possibly
	luminosity falls off rapidly with distance from the	(s). The ductions propose an of the following as possibly
	center. If luminosity were a true indicator of mass,	
	most of the mass would be concentrated toward	EXCEPT
	the center. Outside the nucleus the rotational	(A) massive black holes
(25)	velocity would decrease geometrically with	(B) small black holes
	distance from the center, in conformity with	(C) small, dim stars
	Kepler's law. Instead we have found that the	(D) massive stars
	rotational velocity in spiral galaxies either remains	(E) large planets
(20)	constant with increasing distance from the center	
(30)	or increases slightly. This unexpected result	
	distance from the center is balanced by an	
	increase in nonluminous mass	
	Our findings suggest that as much as 90 percent	
(35)	of the mass of the universe is not radiating at any	
(/	wavelength with enough intensity to be detected	
	on the Earth. Such dark matter could be in the	
	form of extremely dim stars of low mass, of large	
	planets like Jupiter, or of black holes, either small	
(40)	or massive. While it has not yet been determined	
	whether this mass is sufficient to close the	
	universe, some physicists consider it significant	
	that estimates are converging on the critical value.	