Node Program

Node Basics

Node.js version: 5.1
Last updated: Feb 2016

© Node Program, 2016

© Node Program, 2016

Node.js

"Everything is a callback... in Node
everything is non-blocking and so it
doesn't allow you to just sit there and then
return the response. "

— Ryan Dahl http:/www.infoq.com/
interviews/node-ryan-dahl

http://www.infoq.com/interviews/node-ryan-dahl
http://www.infoq.com/interviews/node-ryan-dahl

Node Language

Node is not JavaScript, but both JavaScript and Node are
ECMAScript.

© Node Program, 2016

global Object

The global object is similar to window object in the browser
JavaScript.

global.require() ()
global .process =

global.console

DTOCESS

© Node Program, 2016

process Object

In Node, interaction with the current Node process takes place
via the process object.

As the process object is a global, it is accessible from anywhere
in the application source code.

Note: it is an instance of EventEmitter - logic can therefore be

applied
to the process object via callbacks assigned to specific events.

© Node Program, 2016

Environment Variables

Environment variables can be accessed via the env attribute:

console. log(process.env);

{ SHELL: '/bin/bash',
USER: 'jordan',
HOME: '/home/jordan',

© Node Program, 2016

Command-Line Arguments

Shell commands accept arguments to alter their behaviour:

$ echo "Hello World!" // "Hello World" is the argument here

Node makes these arguments accessible via process.argv

© Node Program, 2016 7

Command-Line Options

The argv property is an array.

The first two elements are 'node' and the application's name:

$ node app.js argl arg2 arg3=val3

/*
process.argv => [
'node', 'app.js', 'argl',
'arg2', 'arg3=val3'

*/

© Node Program, 2016

Exiting a Process

To exit a process, use the exit function

process.exit();

© Node Program, 2016

Exiting with Errors

Exit codes can also be specified

// this process exits successfully
process.ex1it(0);

// this process failed
process.exit(1l);

// this process failed with a different code
process.exit(127);

© Node Program, 2016 10

Exiting with Errors

Note:

e Different failure codes can be used to differentiate types of
failure

« Knowing how an application failed allows the developers the
NEENRE
to program an appropriate response

© Node Program, 2016

11

Child Processes

A child process is a process created by another process.

To have Node applications run other processes, use the
child process

module.

© Node Program, 2016

12

Execute a Process

The exec function runs a shell command, and invokes a callback
with references to the child process' standard output and error

Cp = ('child process');

ps = cp.exec('ps aux', (err, stdout, stderr) {
.Llog('STDOUT: ', stdout); // data written to stdout
.Llog('STDERR: ', stderr); // data written to stderr

1)

© Node Program, 2016 13

Exec Callback

The exec callback also provides an error object as its first
argument,
which can be analyzed in the event process execution fails.

ps = cp.exec('nonexistant-command', (err, stdout, stderr) {

(err) {

// stack trace
. Llog(err.stack);

// exit code
.Llog(err.code);

¥
1)

© Node Program, 2016

14

© Node Program, 2016

Modules

15

Modules in Browser

Don't exist natively until ESé, i.e., no built-in module support!

© Node Program, 2016

16

Modules in Browser Workarounds

e <script>

e CommonlS

e AMD (requirejs)
e ES6

© Node Program, 2016

17

Module Loaders in Browser

e SystemlJS

e RequirelS

e Browserify

e es6-module-loader

More info: http:/mzl.Ia/1leu8zM and http:/mzl.la/1leu/vz

© Node Program, 2016

18

http://mzl.la/1Ieu8zM
http://mzl.la/1Ieu7vz

Modules in Node

Built-in modules with require a CommonlJS notatioin! %

Node Require Example:

express = ('express');
app = express();

© Node Program, 2016

19

Requiring Modules

Modules can live different places with JavaScript. They can be on
local machines, virtual machines, servers, remote URI locations, or
anywhere really.

© Node Program, 2016

20

Loading Node Modules

These modules can be loaded with module loaders like require or
via inversion of control patterns.

filesystem = ('£s'),

databaseConfigs = ('./configs/database.json'),
routes = ('../routes'),

server = ('./boot/server.js')

© Node Program, 2016 21

Creating a Module with a "Class" Example:

function UserController() {
var username, password;
function doLogin(user,pw) {
username = user;
password = pw;
// do the rest of the login work
by
var publicAPI = {
Login: dolLogin
s
return publicAPI;
by
// create a "UserController instance
var ctrl = UserController();
ctrl.login("fred", "12Battery34!");

© Node Program, 2016

22

Node Patterns for Module Exports

e module.exports = function(ops) {...}
e module.exports = {...}
e exports.methodA = function(ops) {...}

e exports.obj = {...}

© Node Program, 2016

23

module. js:

.exports =

Limit = 100
(options.type ===
Llimit = 200;

{

name: 'request’,
Limit: Llimit,

type: options.type,
method: (data) {

¥
35

© Node Program, 2016

Function Pattern

(options) {

'foobar') {

data; }

main. js:

mod =

Functional Pattern

('./module.js');

request = mod({

type: 'foobar’

1)
request.method({

x: 10,
y: 20
1)

© Node Program, 2016

25

Demo

e dayl-0O6-modules-stepi.js

e dayl-O7-modules-step2.js (which references the greetings.js file)

© Node Program, 2016 26

© Node Program, 2016

npm

27

© Node Program, 2016

Meet the beast!

needlessly promiscuous, modularize! npm private modules npmEnterprise documentation blog npmweekly jobs support

signuporlogin

npm is the package manager for io js|
@ "7 T, BEIETLL P

packages people 'npm install’ a lot

EXPress attllil
PM:2

browserify express pm2
browser-side require() the node way Fast, unopinionated, minimalist web framework Production process manager for Node.JS applications w...

9.0.3 published 2 months ago by substack 4.12.0 published 2 months ago by dougwilson 0.12.6 published 2 months ago by jshkurti

W

https://www.npmjs.com/package/express

28

What is npm?

A package manager for Node.
e Website: https:/www.npmjs.com/
e Command-line tool: npm

e Registries: public and private

© Node Program, 2016

29

https://www.npmjs.com/

Introduction to NPM

Two ways to install a module:

e |ocally: most of your projects' dependencies, e.g., express,
request, hapi

npm install module-name

e Globally: comman-line tools only (mostly), e.g., mocha, grunt, slc

npm install -g module-name

© Node Program, 2016

30

$ npm
$ npm
$ npm
$ npm
$ npm
$ npm
$

instal
instal
instal
instal

install
install

=

=

=

=

=

=

=

=

=

Installing packages

express
express@4.2.0
express@latest
express --save
mocha --save-dev
grunt -g

sudo npm install grunt -g

© Node Program, 2016

31

Package.json

Creating package.json: Run init action to interactively create a
package.json

$ npm init
This utility will walk you through creating a package.json
file. It only covers the most common items, and tries to

guess sane defaults.

See ‘npm help json for definitive documentation on these
fields and exactly what they do.

Use "npm install <pkg> --save afterwards to install a package
and save it as a dependency in the package.json file

Press AC at any time to quit
name: (my-package-name)

© Node Program, 2016

32

Package.json

"name": "my-cool-app",
"version": "0.1.0",
"description”: "A gret new application',
"main": "server.js",
"dependencies": {
"express'": "~4.2.0",

"ws": "~0.4.25"
s

"devDependencies": {
"grunt": "~0.4.0"

b
b

© Node Program, 2016

33

npm

When running npm install NAME in a folder:
e nmp looks for node_modules or package.json
e if nothing is found it goes up the tree

Therefore, in an empty folder, create package.json or
node modules dir first.

© Node Program, 2016

34

Sample Code:

dayl-11-npm-cli.txt

© Node Program, 2016

Demo —

35

Public Modules & Registries

Set config values...

$ npm set init.author.name "Your Name"
$ npm set init.author.email "you@example.com"
$ npm set init.author.url "http://yourblog.com"

Sign up on the npm website and add yourself:

$ npm adduser

© Node Program, 2016 36

Publishing your module

Add package. json (maybe try npm init)
Then Publish!

$ cd my-cool-app
$ npm publish

© Node Program, 2016

37

e Hosted by npmijs

e Hosted by you

© Node Program, 2016

Private Registries

38

Advantages of private:

Code is not exposed to outside and no external dependencies (if
self-hosted)

(There are strategies for deployment, e.g., tar file)

© Node Program, 2016

39

To list curently installed npm modules, use the Is action
s lists out modules local to the current Node project

$ npm 1ls
/home/johndoe/node-app
| gal.0.1

To list globally installed modules, add the -g flag

$ npm ls -g
/usr/Llib
| _ bower@l.3.11

| abbrev@l.0.5

| archy@9.0. 2

| semver@4.0.0

© Node Program, 2016

40

Search

Search for npm modules via the search action
$ npm search [keyword]

This action carries out several tasks
1. queries the npm Registry
2. retrieves search results

3. prints it out to standard output

© Node Program, 2016

41

Update

To update an npm module, use the update command
$ npm update mysqgl

Updating only works if the module has already been installed

© Node Program, 2016

42

Remove a module

To remove an npm module
$ npm rm mysql
To remove a global module

$ npm rm mysgl -g

© Node Program, 2016

43

Packaging

Module packaging in Node is done using a package. json file
There are many options that can be configured:

* name
e version number
e dependencies

e etc

© Node Program, 2016

44

Private Modules

The private attribute prevents accidental publishing

{

"name" : "my-private-module',
"version": "0.0.1",

"private'": true,

© Node Program, 2016

45

npm Enterprise

When to use -g?

A: Only for command-line tools. They usually have bin in
package.json:

{

"name" : "stream-adventure",
"version": "4.0.4",
"description'": "an educational stream adventure',
llbinll o {
"stream-adventure": "bin/cmd.js"

J

"dependencies": {

© Node Program, 2016

47

Hello World

Types of web content
e Static

e Dynamic

© Node Program, 2016

Web Content

49

Static content

Static content is inclusive of things like image files, static html files
that are already put together, and other related content that is
stored on some style of drive storage and available for immediate
return to a requestor via general response.

© Node Program, 2016

50

Dynamic content

Dynamic content, which is the content that is put together - or
generated - by code pulling together data from data sources or
other means, and then provided to the requestor.

© Node Program, 2016

51

VA®,

Node.js is excellent at dynamic generation and returning content
that is pure /O in the sense of built or dynamic content.

For static content like image files and related content it is actually a
great benefit to hand that off to server software that can handle
the specific OS level request.

© Node Program, 2016 52

The server, request, response objects
var http = require('http');
http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');
}).listen(133/, '12/.0.0.1");

console.log('Server running at http://12/7/.0.0.1:133/7/"');

© Node Program, 2016 53

Running the App

Run with:

$ node server.js

Send requests:

$ curl http://localhost:1337

Or
http:/localhost: 1337

© Node Program, 2016

54

http://localhost:1337

HTTP Object

Http object:

https:/nodejs.org/api/http.html
https:/nodejs.org/api/http.html#http _class_http_server

var server = http.createServer([requestListener])
server. listen(port[, hostname][, backlog][, callback])

© Node Program, 2016

55

https://nodejs.org/api/http.html
https://nodejs.org/api/http.html#http_class_http_server

HTTP Response

response.writeHead(200, {
'Content-Length': body. length,
'Content-Type': 'text/plain' });

© Node Program, 2016

56

Demo

Sample Code (code/node):
1. day1-08-nodejs-app.js
2. day1-09-nodejs-app?2.js

3. dayl-11-nodejs-static-server.js

© Node Program, 2016

57

learnyounode Workshop

1. Pick the first problem
2. Read instructions

3. Solve the problem (e.g., create program. js).

4. \erify

5. Pick the next problem

© Node Program, 2016

58

Starting learnyounode

Install:

$ sudo npm install learnyounode -g

Start:

$ learnyounode

© Node Program, 2016

59

Verifying learnyounode

Verify solution with:

$ learnyounode verify program.js

© Node Program, 2016

60

