

- 1. Given the sets $A=\{a,b,\{c\},d,e,\{f\}\}$ and $B=\{1,3,5,\{7,9\}\}$ state whether each statement is true or false.
 - a. $b \in A$
 - b. $c \in A$
 - c. $7, 9 \in B$
 - d. $\{7,9\} \in B$
 - e. $a, b, d \in A$
 - f. $\{a, b, d\} \in A$
 - g. $1, 3, 5 \in A$
 - h. $\{c\}, \{f\} \in A$
- 2. **Determine the cardinality of the following sets.** If it's finite, state a number. If it's infinite, say it's infinite.
 - a. $\{x, y, z, w, v\}$
 - b. $\{\{x, y, z\}, w, v\}$
 - c. $\{1, 2, 3, ..., 99, 100\}$
 - d. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\}$
 - e. Ø
 - f. $\{\emptyset,\emptyset\}$
 - g. $\{\{a\}, a, a, a, a, \{a\}\}$
 - h. $\{0,\{0\},\{\{0\}\},...\}$

Solutions are presented on the next page!

- 1. Given the sets $A = \{a, b, \{c\}, d, e, \{f\}\}$ and $B = \{1, 3, 5, \{7, 9\}\}$ state whether each statement is true or false.
 - $\mathsf{a}.\ b\in A$

True.

b. $c \in A$

False. Only $\{c\}$ is an element of A.

c. $7, 9 \in B$

False. Neither are elements of B. $\{7\}$ and $\{9\}$ are elements of B.

d. $\{7,9\} \in B$

True.

e. $a, b, d \in A$

True.

 $f. \{a, b, d\} \in A$

False. $a, b, d \in A$, but not the set of all three.

g. $1, 3, 5 \in A$

False. These are elements of B.

h. $\{c\}, \{f\} \in A$

True.

- 2. **Determine the cardinality of the following sets.** If it's finite, state a number. If it's infinite, say it's infinite.
 - a. $|\{x, y, z, w, v\}| = 5$
 - b. $|\{\{x,y,z\},w,v\}| = 3$
 - c. $|\{1, 2, 3, ..., 99, 100\}| = 100$
 - d. $|\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\}|$ is infinite.
 - e. $|\varnothing| = 0$
 - $f. |\{\varnothing,\varnothing\}| = 1.$

Repeated elements do not count multiple times.

g. $|\{\{a\}, a, a, a, a, \{a\}\}| = 2$.

Repeated elements do not count multiple times.

h. $|\{0, \{0\}, \{\{0\}\}, ...\}|$ is infinite.