
Strumenta s.r.l. C.so Corso Giuseppe Siccardi 11 bis, 10122 Torino (TO), Italy | info@strumenta.com | https://strumenta.com | VAT Number: IT 11817320010

What is Legacy Code

https://strumenta.com/

1

Strumenta s.r.l.

Let's see what is Legacy Code.

2

Strumenta s.r.l.

In this lesson we are going to see what makes our code legacy, and we are also going to see
some real world concrete examples. This is in general something that we will strive to do in the
whole course, so not making things abstract or theoretical, but just share concrete examples
so that we can ensure that we are on the same page. We are talking about the same concrete
problems.

3

Strumenta s.r.l.

This is the agenda that we are going to follow. So, recognize legacy code, understand when we
have legacy code. We are going to see how it happens that we get legacy code, why our code
becomes legacy, and then we are going to see some concrete examples.

4

Strumenta s.r.l.

So, what is legacy code? It's a little bit like a typewriter. My beloved Aunt Cicci used to write
letters to her friends using a typewriter a few years ago, but then she got a computer and she
started doing basically the same thing, writing emails instead of physical letters but using this
new tool for communicating.

At the same time she could do much more because she could connect on Facebook, share
photos and do all the kind of things that you can do on social networks. And you see with a
typewriter you can only write letters, but with a computer you can do much more. And so, that
is legacy code. Its code that limits your possibilities in the current world. It's a little bit trying to
use a typewriter in 2023 and farther.

5

Strumenta s.r.l.

There are many different possible definitions of legacy code…

6

Strumenta s.r.l.

…depending on technical business and practical aspects.

7

Strumenta s.r.l.

One way to define code as legacy or one reason to consider the code legacy is because it's
written in a legacy language, in a language that is not typically used for writing modern
application. We could also say that a language is legacy if it's used primarily to maintain existing
systems and not to create new ones. So, if no one is considering using COBOL to create a new
application, then we can say that COBOL is a legacy language, and therefore code base is
written primarily in COBOL, are legacy code bases.

8

Strumenta s.r.l.

Software can be legacy code also when it's written in a non legacy language. That case, things
are slightly more complicated to define.

9

Strumenta s.r.l.

We can consider the situation in which a project is forced into maintenance mode because
developing new features is too risky, costly, or nobody is able to do that.

So, you have code that does something valuable, but value is hard to use fully because of
technological issues with the form in which this valuable business logic is expressed.

10

Strumenta s.r.l.

For example, maybe the code run on some old platform. It could be code written in, let's say
Python, but it depends on some features of some old operative system or some hardware that
are old and expensive and difficult to maintain. And so, it makes the code legacy. Maybe it's
code that relies on some old paradigms. For example, UI paradigm like console or desktop
when everybody's moving to mobile application and Web applications, or could be using some
unmaintained framework like ANTLR2. So for example, even an application written in Java,
which I will not say is a legacy language, could be legacy code because it's based on some old
version of Struts, and no one is maintaining it anymore.

11

Strumenta s.r.l.

Now, we've seen some examples of obsolete business practice, l using mainframes instead of
using cloud services, and this could lead to high initial or maintenance cost, but we can also
consider some obsolete technical practices like using languages or frameworks that are not
maintained or are not evolving anymore.

12

Strumenta s.r.l.

It's not like you plan to get legacy code. This is something that happens to you. You keep
walking by the same path that you always used to, and when you got started, it was the very
best path possible. And at some point it was still something that was working really, really well.
But nowadays, everybody else has found a better path than you, and so they can go to their
destination much faster that you can. So, you didn't do any mistakes. It's just that somebody
else found a better way to do things, and this is how you get legacy code.

13

Strumenta s.r.l.

We have briefly seen why some code can be considered legacy. In the rest of the course, we
will go more in details about the specific problems, but we've just seen in general what makes
code legacy, and this is basically problems making code legacy, problems that prevent to use
it properly. Now we are going to see why code becomes legacy, how we end up having a legacy
code base.

14

Strumenta s.r.l.

Legacy code is created by a mix of obsolete business and technical practices.

15

Strumenta s.r.l.

Now, legacy code becomes legacy, well, not at the very beginning of the project. It's very rare
that a project is written from scratch using technologies that are past their prime and are
obsolete already at the moment in which the code base is created.

Typically, the code become legacy, because while it was created using the best or at least
reasonably modern technical solutions at the time the project was created, eventually the
world move on, move to other projects, to other technologies. And so, we have some code
that is stuck, is crystallized in all technologies, and we were not able to modernize it iteratively
over time. And so, eventually our code ended up being in some technologies that is really not
just mature but really outdated and should be dismissed as soon as possible.

16

Strumenta s.r.l.

Code doesn't become legacy from one day to the other. It's something that happens gradually.
Maybe we write code in, let's say COBOL, and a new language come up, and it's slightly more
modern than what we used to have, but we don't want to move. We want to keep our code
base in, let's say COBOL. And then new technologies come up, and then more times pass, and
eventually our code becomes really, really legacy.

At some point, initially, maybe when we initially brought the application, our code base was
modern, then was mature, maybe slightly updated. Eventually, 30 years since we created the
application, now it's legacy.

17

Strumenta s.r.l.

This is a natural process because when we write an application in a certain language, after we
have created it and we evolve it, we start getting value out of it, new technologies come up,
but these new technologies sometimes seems promising, and they disappear two years after.

In some other cases some of these new technologies that comes up become more stable,
more mature, and eventually they become de facto standard. Everybody will use them if they
had to create a new application in that particular moment. And they become more modern.
They become a new point of reference. And in respect to these new technologies, the
technologies in which we have implemented as our solution now looks old and updated
because we are not as productive, because all developers move to these other technologies.

18

Strumenta s.r.l.

Unfortunately, it's very hard to predict which technologies become outdated and when this
will happen, and so you can only sometimes react after the fact.

19

Strumenta s.r.l.

Some other important points to consider is that the status of legacy code is context
dependent, not absolute. It means that some languages could be considered legacy in general,
but maybe they're still actively used in a certain industry. So, in that particular niche, maybe
there's still a modern solution or an acceptable solution.

20

Strumenta s.r.l.

Languages can become slowly legacy languages. For example, C++ is currently a reasonable
solution in embedded or system programming. However, it's considered a legacy solution in
most other fields. For example, even the NSA suggested moving away from C and C++.

21

Strumenta s.r.l.

In the future C and C++ could be replaced by languages like Rust. Right now at this moment
Rust seems very promising, but it's very early to say if 10 years from now everybody will be
abandoning C++ and moving to Rust.

It could be very well the case that five years from now, Rust will not have achieved this huge
popularity. Maybe it will be in decline and be replaced by some other alternatives that we don't
know yet.

So, this is also one reason why many organizations tend to be conservative. You don't want to
jump on all the new technologies that come up because you can only verify after a certain
time if there are really technologies that are here to stay for a reasonable amount of time or if
they're just going to fade out after a brief moment of glory.

22

Strumenta s.r.l.

Now, there are many ways in which something can become legacy code, and this can depend
on your decisions and on industry as a whole.

23

Strumenta s.r.l.

Not all old code is legacy code. For example, in the case of Windows, this Windows code base
is very old. It had originally very old design, but it's not legacy code because Microsoft has
spent billions investing on it and keep it up to date even if the original code base was written
a long time ago, and they were able even to develop new practices to deal with this code base.

24

Strumenta s.r.l.

However, desktop application that runs on Windows could instead be legacy code today
because they were not able to keep up with the new APIs released by new version of Windows.
So, maybe they could still be running on recent version of Windows but look outdated, not
take benefit of the features or maybe relies on APIs that no modern developers know anymore
because they have not been supported or widely used in the last 20 years.

25

Strumenta s.r.l.

So, unless you are Microsoft where you are able to shape your own environment in a sense,
often legacy code happen to you because of a changing environment and the decisions made
by your ecosystems, like developers moving away, like framework being not support anymore,
like operative systems evolving and changes their APIs. Sometimes it's the environment that
dictates the conditions, and these changing conditions could result in your code base become
legacy because the world around it change, and the code base was not able to keep up with
the world that was changing.

26

Strumenta s.r.l.

A project can also become legacy code because your company has changed. For example, if
you have 10 different systems, and you move nine of them to the cloud, and now you need
to have different processes for the single application that you didn't move to the cloud. Now
that single application is becoming more costly to maintain and evolve for you because you
move all your processes, all your skills to maintain applications based on the cloud. And so,
your only application that is not running on the cloud because of that becomes more
expensive and more difficult and cause extra complication to maintain because of your
decisions.

So in general, maybe for another organization that instead decided to run everything on their
own system, maybe if they had your very same application, that wouldn't be legacy for them
because they will be structured in order to maintain that kind of application, or why when you
move the decision to move to the cloud, and you reorient your resources to support that kind
of application, only your application that did not move to the cloud becomes more expensive
and more difficult for you, and so becomes legacy for you.

27

Strumenta s.r.l.

Another very common reason because code becomes legacy is because the conditions around
you change. For example, your code base is written in FORTRAN used to have the best and
greatest FORTRAN developers but they retired. It's become more difficult to find good
FORTRAN developers, and so this cause a difficulty to you. Your code base is more expensive
to maintain than it should be because of the technologies used to define it. And so, these
characteristics make your codebase legacy.

28

Strumenta s.r.l.

I think that CDs are good examples of the essence of a legacy problem. You may think that
CDs were replaced by a better way to store music, similarly to what happened when cassettes
or vinyl came by. However, this is not what made them obsolete. They were actually replaced
by an entirely new way of listening to music, streaming. So now, the paradigm must change,
while before, maybe instead of cassettes I could have CDs, and I could store them more easily.
Now I have streaming that makes possible to have access to a quantity of music that you
couldn't really imagine when you were just used to get CDs, right? You can get literally millions
if not tens of millions of songs in your pocket or access to those songs.

So, it's really a change in paradigm, and that is really the core of legacy code. It's not replaced
by something a bit better, but some things that just work in a completely different way that
enables you to do different things. And if you get stuck with legacy code, all these new
possibilities are precluded to you.

29

Strumenta s.r.l.

There are many examples of legacy application. Now we would like to share some examples
that we have personally encountered as part of our work.

30

Strumenta s.r.l.

There are code bases that are legacy because of legacy practices, like they're using some old
platforms, like they're running on mainframes from older kind of machines that are now not
as widespread as they used to be, or they're based on unsupported operative systems.

Or maybe we have an old paradigm, like maybe application are based on legacies' databases,
maybe old relational databases, or maybe they're based on Excel plugins that are not
compatible with a new version of Excel running in the browser. Or they use an old approach,
like they are standalone project of desktop application, not integrated maybe in distributed
Web applications, or they could be written in own languages like COBOL, PL/1, VB6, RPG, SAS,
FORTRAN. There are so many.

31

Strumenta s.r.l.

Now, we are going to see a few examples for each group.

32

Strumenta s.r.l.

Let's start with old platforms.

33

Strumenta s.r.l.

Applications running on mainframe are now considered, in most cases, legacy code because
most companies nowadays are used to different systems either having application running on
the cloud or using inexpensive machines like the one using Intel CPUs or, for example, Apple
silicon.

34

Strumenta s.r.l.

For example, a financial company that we work with needed to move their code from running
on mainframe to running on Intel-based servers, servers that they could provisions for a very
low cost and were very easy to scale because buying an additional five of these machines
would be very, very simple for them.

This case required a very significant migration effort because they needed to move their code
base from RPG to Java. So, developing a transpiler that will translate their code from RPG to
Java.

35

Strumenta s.r.l.

Other example with Legacy Language.

36

Strumenta s.r.l.

We worked with a company that is offering specialized services and legacy modernization.
They have experience working with a certain, specific kind of legacy modernization. And so,
we worked with them developing a PL/1 to Java transpiler so that they could use it to provide
services to their own clients.

37

Strumenta s.r.l.

Some time ago, we worked with a company in the broader financial industry, company based
in Asia.

38

Strumenta s.r.l.

They developed a system based on their clients defining code inside VBA. They were defining
VBA script inside Excel, and they had a system that extracted this code processes, process it,
and transform calculation. However, this system was not working that well as their system
scale because this was not fast enough. And so, the fact that it was relying on VBA and the
execution speed of VBA was really preventing them to move forward and was making the
system unmaintainable for them.

39

Strumenta s.r.l.

So, in that case we developed a transpiler that was taking this VBA code, transpile to C++ and
execute it much faster so that they were actually be able to work with very large system
processing millions of records.

40

Strumenta s.r.l.

Another example of legacy application that we met is related to parsers.

41

Strumenta s.r.l.

Over the years we have met clients that had parser written based on ANTLR v2 and ANTLR v3,
and we helped them migrating with ANTLR v4 because ANTLR v2 and v3 were not maintained
anymore, was difficult to get fixes for those systems and was difficult to find developers that
knew ANTLR, these old versions of ANTLR. So, in that case we helped them migrate to a new
framework.

42

Strumenta s.r.l.

Another example of legacy code is often related to databases…

43

Strumenta s.r.l.

…and the SQL code that is being written to run on specific databases, like for example, Oracle
or Teradata.

And many companies nowadays want to move to other database like Azure or Snowflake and
so on. And so, they need to translate their code from a certain flavor of SQL to another one so
that they can move to these other databases.

44

Strumenta s.r.l.

And so, we have helped them translate this SQL code.

45

Strumenta s.r.l.

For example, in some cases they move from one SQL dialect to another SQL dialect because
they want to move from Teradata SQL to Snowflake. In other cases, some companies wanted
to move away from dialects of SQL that were containing also procedural code, for example
PL/SQL, to proper general purpose languages like Java.

46

Strumenta s.r.l.

Or we have worked also with companies that wanted to move away from SAS to a
combination of Python and SQL.

47

Strumenta s.r.l.

In that case, so they could use the strong points of SQL for processing data and of Python to
perform more advanced data analysis.

48

Strumenta s.r.l.

Now we can see an example that is a bit more advanced and more rare.

49

Strumenta s.r.l.

This is an example of a client of ours that is a large company, a large conglomerate. They're
writing software to managing infrastructure, like climatization system for building, industrial
technologies and so on. And they developed over the years a series of different systems as
they work on different projects, work with different clients and so on. When they needed to
support a new piece of technologies, they just add the technology piece to their system.

50

Strumenta s.r.l.

And eventually the system was supporting so many different technologies, was very difficult
to maintain.

So in their case, we develop a domain specific language. So, language that they could use to
express everything they needed to and simplify the adding support for a new technology.

51

Strumenta s.r.l.

So, we then help them migrate the existing code to this DSL.

52

Strumenta s.r.l.

We have seen that software does not rot, per se…

53

Strumenta s.r.l.

…but changes in business practices, and the environment can make your code legacy, because
now there are better alternatives or because the conditions made more difficult to maintain
the systems. So, changes in services provided by vendors, changes in skill and competencies
that are available, or just the fact that there are better alternatives can make your code legacy.

54

Strumenta s.r.l.

We have seen many examples. For example, the migration from desktop to Web or mobile
applications all of a sudden made desktop applications looks very outdated, even if nothing
changed about desktop application per se.

55

Strumenta s.r.l.

Or imagine again a company that has a series of application written in Visual Basic. When
Microsoft stopped developing Visual Basic, they could not improve their apps, so they needed
more features, like for example, the support for Unicode. They got stuck.

And given there is a huge barrier in moving to another language because the typical approach
is taking your application and then rewrite completely in another language. Because of this
huge barrier, they keep remaining stuck in code that is written in Visual Basic that becomes
more and more outdated as the time pass.

56

Strumenta s.r.l.

One such client, we have them migrating from Visual Basic to JavaScript so that they could
move, transform the desktop application in Web applications. And we did that through
defining a transpiler.

57

Strumenta s.r.l.

In this lesson we've seen, we've seen that legacy code is not just old code. It is code that is
difficult to maintain, costly to maintain, that is worse than the alternatives because of changes
in the environment, typically. But this code, it's important to consider that it's still valuable.
There are problems in the form in which this code is expressed, but the logic that is expressed,
the function that is performing are still very valuable because if this is not the case, you can
simply throw away that code.

