## Angle Relationships classwork

• Adjacent angles: angles in a plane that have a common <u>Vertex</u> and a common <u>Sido</u>, but no common interior points. Please draw an example:

LBAC adjacent to LCAD A B TO

• **Linear pair**: adjacent angles whose non-common sides are opposites rays. Please draw an example:



• **Vertical angles**: two nonadjacent angles formed by two intersecting lines. Please draw an example:

23 = 24

Vertical ongles are

always =

## KeyConcept Angle Pair Relationships

Vertical angles are congruent.

Examples  $\angle ABC \cong \angle DBE$  and  $\angle ABD \cong \angle CBE$ 



Complementary angles are two angles with measures that have a sum of 90.

Examples  $\angle 1$  and  $\angle 2$  are complementary.  $\angle A$  is complementary to  $\angle B$ .



Supplementary angles are two angles with measures that have a sum of 180.

Examples  $\angle 3$  and  $\angle 4$  are supplementary.  $\angle P$  and  $\angle Q$  are supplementary.



The angles in a linear pair are supplementary.

Example  $m \angle 1 + m \angle 2 = 180$ 



Ex #1: Find the measures of two complementary angles if the difference in the measures of the

two angles is 12.

first angle: X

Second angle: X + 12

Complementary = 90

X + (x+12) = 90 2x+12 = 90 2x = 78

X = 39thus, X+12 = 51the angles are  $39 \neq 5$ 

 $\underline{Ex \#2}$ : Find x and y so that  $\overline{BE}$  and  $\overline{AD}$  are perpendicular.



Perpendicular Lines: lines that intersect to form right angles. The symbol is:  $\perp$ 

Ex#3: Find x and y so that  $\overrightarrow{PR}$  and  $\overrightarrow{SQ}$  are perpendicular.



$$2x + 5x + 6 = 90$$
  
 $7x + 6 = 90$   
 $7x = 84$   
 $x = 12$ 

$$4y - 2 = 90$$
  
 $4y = 92$   
 $y = 23$