Question		Answer	Marks	AO element	Guidance
5 (a)	(i)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Calculates CORRECT enthalpy change with correct – signs for $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 AND Δ_rH , for reaction 5.1. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Calculates a value of $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 from the: Energy change AND Amount in mol of CuSO ₄ . There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Processes experimental data to obtain the: Energy change from mc∆T OR Amount in mol of CuSO ₄ .	6	AO3.1 ×4 AO3.2 ×2	Indicative scientific points may include: 1. Processing experimental data Energy change from $mc\Delta T$ • Energy in J OR kJ Using 50.70 g, 50.0 g = 50.70 × 4.18 × 13.5 = 2861 (J) OR 2.861 (kJ) 3SF or more (2.861001 unrounded) OR 50.0 × 4.18 × 13.5 = 2821.5 (J) OR 2.8215 (kJ) Amount in mol of CuSO ₄ • $n(CuSO_4) = \frac{7.98}{159.6} = 0.0500 \text{ (mol)}$

H432/03

Question		Answer	Marks	AO element	Guidance
		0 marks – No response or no response worthy of credit.			
(a)	(ii)	Temperature change = $0.2 \times \frac{100}{100} = 100^{\circ}$	1	AO2.8	IGNORE direction of temperature change
		$\frac{1}{20} = 1000$			Working NOT required
(b)		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks	4	AO2.4 ×4	
		Part 1: Calc of $\Delta_r S$ 1 markUse of 298 K (seen anywhere)1 mark• e.g16.1 = -55.8 - 298 × ΔS	-		Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$
		 CORRECT use of Gibbs' equation 1 mark using candidate's temperature (e.g. 298) with -16.1 AND -55.8 			= -0.133(kJ K ⁻¹ mol ⁻¹) OR -133 (J K ⁻¹ mol ⁻¹) Sign required IGNORE units
		• to calculate ΔS in kJ OR J \checkmark			Calculator: –0.133221 (kJ K ⁻¹ mol ⁻¹) –133.221 (J K ⁻¹ mol ⁻¹)
					ALLOW ECF from incorrect temperature.
		Part 2: Calc of $S(Na_2S_2O_3)$ 1 markCORRECT use of standard S data in question \checkmark Seen anywhere (could be within an expression) e.g.• $372.4 - [S(Na_2S_2O_3) + (5 \times 69.9)]$			
		• OR 372.4 – (5 × 69.9)			
		• OR 372.4 – 349.5			
		• OR 22.9			
		IGNORE sign, i.e. ALLOW –22.9, etc	-		Using -133 : S(Na ₂ S ₂ O ₃) = 372.4-349.5 - (-133)
		CORRECT calculation of $S(Na_2S_2O_3)$ using candidate's calculated ΔS in Part 1 to 3 SF 1 mark \checkmark			= 22.9 + 133 = (+) 156 (J K ⁻¹ mol ⁻¹) 3 SF required
					ALLOW ECF from incorrect $\Delta_r S$ (Part 1)

H432/03

Question		on	Answer	Marks	AO element	Guidance
	(c)	(i)	109.5(°) AND tetrahedral ✓	1	AO1.2	ALLOW 109–110(°)
		(ii)	$\overline{O} - S - S - S - S - S - O^{-1}$ $OR - O^{-1} - O^{-1$	1	AO3.1	IGNORE charges ALLOW cyclic structures. Three 6-ring structures possible, e.g. 0 - 1 - 0 - 1 - 0 - 0 - 2 - 0 - 0 - 2 - 0 - 0 - 2 - 0 - 0
			Total	13		