Question			Answer	Marks	AO element	Guidance
5	(a)	(i)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Calculates CORRECT enthalpy change with correct - signs for $\Delta_{\text {sol }} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)$ for reaction 5.2 AND $\Delta_{r} H$, for reaction 5.1. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculates a value of $\Delta_{\text {sol }} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)$ for reaction 5.2 from the: Energy change AND Amount in mol of CuSO_{4}. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Processes experimental data to obtain the: Energy change from $m c \Delta T$ OR Amount in mol of CuSO_{4}. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 4 \\ \\ \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	Indicative scientific points may include: 1. Processing experimental data Energy change from $m c \Delta T$ - Energy in J OR kJ Using $50.70 \mathrm{~g}, 50.0 \mathrm{~g}$ $\begin{array}{r} =50.70 \times 4.18 \times 13.5=2861(\mathrm{~J}) \text { OR } 2.861(\mathrm{~kJ}) \\ 3 \mathrm{SF} \text { or more } \quad(2.861001 \text { unrounded) } \\ \text { OR } 50.0 \times 4.18 \times 13.5=2821.5(\mathrm{~J}) \text { OR } 2.8215(\mathrm{~kJ}) \\ \hline \end{array}$ Amount in mol of CuSO_{4} - $n\left(\mathrm{CuSO}_{4}\right)=\frac{7.98}{159.6}=0.0500(\mathrm{~mol})$ 2. \pm value of $\Delta_{\text {sol }} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)$ for reaction 5.2 From $m=50.70 \mathrm{~g}= \pm \frac{2.861}{0.0500}= \pm 57.22\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (-57.22002 unrounded) From $m=50.0 \mathrm{~g}= \pm \frac{2.8215}{0.0500}= \pm 56.43\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3. CORRECT enthalpy changes for reactions 5.2 and 5.1 with signs (using 50.70 g ONLY) Reaction $5.2 \quad=-57.22\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3SF or more with correct - sign Reaction 5.1 $\begin{gathered} \Delta_{\mathrm{r}} H=\Delta_{\mathrm{sol} H\left(\mathrm{CuSO}_{4}(\mathrm{~s})\right)-\Delta_{\mathrm{sol}} H\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})\right)}=-57.22-8.43=-65.65\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ 3 \text { 3F or more with correct }- \text { sign } \end{gathered}$ NOTE: A clear and logically structured response would include an energy cycle ALLOW omission of trailing zeroes ALLOW minor slips

Question		Answer	Marks	AO element	Guidance
		0 marks - No response or no response worthy of credit.			
(a)	(ii)	Temperature change $=0.2 \times \frac{100}{20}=1(.0)^{\circ} \mathrm{C} \checkmark$	1	AO2.8	IGNORE direction of temperature change Working NOT required
(b)		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer $=(+) 156\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ award 4 marks Part 1: Calc of $\Delta_{r} S$ Use of 298 K (seen anywhere) 1 mark - e.g. $-16.1=-55.8-298 \times \Delta S$ CORRECT use of Gibbs' equation 1 mark - using candidate's temperature (e.g. 298) - with -16.1 AND -55.8 - to calculate ΔS in $k J O R J$ \qquad	4	$\begin{gathered} \mathrm{AO} 2.4 \\ \times 4 \end{gathered}$	ALLOW ECF from incorrect temperature.
		Part 2: Calc of $\boldsymbol{S}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ CORRECT use of standard S data in question Seen anywhere (could be within an expression) e.g. - $372.4-\left[\mathrm{S}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)+(5 \times 69.9)\right]$ - OR 372.4 - (5×69.9) - OR 372.4 - 349.5 - OR 22.9 IGNORE sign, i.e. ALLOW -22.9, etc CORRECT calculation of $S\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ using candidate's calculated ΔS in Part 1 to $3 \mathbf{S F}$			Using -133: $\begin{aligned} S\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)= & 372.4-349.5-(-133) \\ = & 22.9+133 \\ = & (+) 156\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & 3 \mathrm{SF} \text { required } \end{aligned}$ ALLOW ECF from incorrect $\Delta_{r} S$ (Part 1)

Question		Answer	Marks	AO olement	Guidance
(c)	(i)	109.5 $\left(^{\circ}\right.$) AND tetrahedral \checkmark	1	AO1.2	ALLOW 109-110(${ }^{\circ}$)
	(ii)	 OR OR IGNORE absence of charges OR incorrect charges	1	AO3.1	IGNORE charges ALLOW cyclic structures. Three 6-ring structures possible, e.g. 2- NOTE: There MUST be 2 atoms in centre between 6-bonded S atoms. e.g. DO NOT ALLOW For other structures, contact TL
		Total	13		

