

2Sm A/B EXAMEN BLANC 1 A.S: 2022-2023

<u>Date : 19 Mai 2023</u> Durée :4h Coefficient : 9

INSTRUCTIONS GÉNÉRALES

- 1. L'utilisation de la calculatrice non programmable est autorisée
- 2. Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient.
- 3. Ne pas oublier de noter les pages de vos copies
- 4. L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter

COMPOSANTES DU SUJET

L'épreuve est composée de quatre exercices repartis suivant les domaines comme suit :

Exercice 1	structures algébriques	3,5 points
Exercice 2	Arithmétique	3 points
Exercice 3	les nombres complexes	3,5 points
Exercice 4	Analyse	10 points

Exercice 1 3,5 points

On rappelle que $(M_2(\mathbb{R}), +, \cdot)$ est un espace vectoriel réel.

On considère les deux matrices : $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 \\ -1 & \sqrt{3} \end{pmatrix}$.

On considère l'ensemble $E=\{M(x,y)=\left(\begin{array}{cc} x & y \\ -y & x+\sqrt{3}y \end{array}\right)/(x,y)\in\mathbb{R}^2\}$

- 0,5 pt 1(a) Montrer que $(E,+,\cdot)$ est espace vectoriel réel
- 0.5 pt (b) Montrer que (I, J) est une famille libre, puis en déduire la dimension de l'espace vectoriel E.
- $0.25 \text{ pt } 2(a) \text{ Vérifier que } J^2 = \sqrt{3}J I.$
 - 0,5 pt (b) Montrer que E est une partie stable de $(M_2(\mathbb{R}), \times)$.
- $0.25 \text{ pt } 3. \text{ Soit } a \in \mathbb{C} \mathbb{R}. \text{ Montrer que } (1, a) \text{ est une base de l'espace vectoriel réel}$ $(\mathbb{C},+,\cdot).$
 - 4. On considère l'application $\varphi_a \colon E \to \mathbb{C}$ définie par :

$$\varphi_a : E \to \mathbb{C}$$

$$M(x,y) \mapsto x + ay$$

- (a) Montrer que φ est un isomorphisme de (E, +) vers $(\mathbb{C}, +)$. 0.5 pt
- (b) Déterminer les valeurs de a tels que φ_a soit un homomorphisme de 0.5 pt (E,\times) vers (\mathbb{C},\times) .
- 0,5 pt (c) Posons $a=\frac{\sqrt{3}}{2}+\frac{1}{2}i$. Soit n dans \mathbb{N} . Calculer $\varphi_a(J^n)$ en fonction de n, en déduire que : $J^n=I\Leftrightarrow n\equiv 0$ [12].

Exercice 2 3 points

Partie A:

Soit $n \in \mathbb{N}$, tel que : $n \ge 2$. Posons $U_n = \underbrace{55 \dots 5}_{n \, fois}$ l'écriture dans la base 7.

- 0,75 pt 1. Montrer que : $6U_n = 5(7^n 1)$, en déduire que $U_{n+1} \wedge 7 = 1$.
 - 0.5 pt 2. Montrer que : $U_{n+1} \wedge U_n = 5$.

Partie B:

On admet que 2003 est un nombre premier.

Soit x un entier naturel tel que : $x^2 + 1 \equiv 0$ [2003]

- 0,5 pt 1. Montrer que : $x^{2003} \equiv -x$ [2003].
- $0.75 \text{ pt } 2. \text{ Montrer que} : x^{2003} \equiv x [2003], \text{ en déduire que } 2x \equiv 0 [2003].$
 - 0,5 pt 3. Montrer que l'équation : $x^2 + 1 \equiv 0$ [2003] n'admet pas de solution dans \mathbb{N} .

Exercice 3 3,5 points

Le plan est rapporté à un repère orthonormée direct $(O, \overrightarrow{u}, \overrightarrow{v})$. Soit $m \in \mathbb{C}^*$. On considère dans \mathbb{C} l'équation

$$(E): 2z^2 + m(1+i)z + m^2(1+i) = 0$$

- 0,25 pt 1(a) Vérifier que le discriminant de l'équation (E) est : $\triangle = (m(1-3i))^2$.
- 0.5 pt (b) Résoudre l'équation (E).
- 0,25 pt (c) Déterminer la forme algébrique de m tel que : $z_1 \times z_2 = 1$.
 - 0,5 pt (d) Dans cette question en suppose que $m=e^{i\alpha}$, où $\alpha \in \mathbb{R}$. Écrire z_1 et z_2 sous la forme trigonométrique.
 - 2. On considère les points A,B et C respectivement d'affixes a=-im, $b=-\frac{m}{2}+\frac{1}{2}im,$ $c=-m-\frac{1}{2}mi.$
- 0,75 pt (a) Vérifier que : $\frac{b-c}{a-c}=i$, en déduire la nature du triangle ABC.
 - 0,5 pt (b) Soit (Γ) l'ensemble des points M(m) du plan, tel que le rayon du cercle circonscrit au triangle ABC égale $\sqrt{10}$. Montrer que (Γ) est un cercle de centre O et de rayon 4.
 - 3. On considère la transformation F qui associer à chaque point M(Z) le point M'(Z') tel que :

$$Z^{'} = 2iZ - m(2+i)$$

- 0.5 pt (a) Déterminer la nature de F.
- 0.25 pt (b) Déterminer l'image du cercle (Γ) par F.

Exercice 4 10 points

Partie I)

On considère la fonction φ définie sur $\mathbb R$ par :

$$\varphi(x) = (2 - x)e^x - 2$$

- $0.5 \text{ pt } 1. \text{ Calculer } \lim_{x \to +\infty} \varphi(x) \text{ et } \lim_{x \to -\infty} \varphi(x).$
- 0,5 pt 2. Dresser le tableau de variations de la fonction φ .
- 0,5 pt 3. Montrer que l'équation $\varphi(x)=0$ admet unique solution α dans $[1,+\infty[$ et que $1,59<\alpha<1,60.$

Partie II)

On considère la fonction f définie sur $\mathbb R$ par :

$$\begin{cases} f(x) &= \frac{x^2}{e^x - 1}, \quad x \neq 0 \\ f(0) &= 0 \end{cases}$$

Soit (C_f) la courbe représentative de la fonction f dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ tel que : $||\overrightarrow{i}|| = ||\overrightarrow{j}|| = 2cm$.

- 0,25 pt 1. Étudier la continuité de la fonction f en 0.
- 0,5 pt 2. Montrer que $\lim_{x\to +\infty} f(x) = 0$ et calculer $\lim_{x\to -\infty} f(x)$.
- 0,25 pt 3(a) Étudier la dérivabilité de la fonction f en 0.
 - 0,5 pt (b) Montrer que f est dérivable sur $]0,+\infty[$ et sur $]-\infty,0[$ et que : $(\forall x\in\mathbb{R}^*)$ $f'(x)=\frac{x\varphi(x)}{(e^x-1)^2}$
- 0,5 pt (c) Montrer que : $f(\alpha) = \alpha(2 \alpha)$ et dresser le tableau de variations de la fonction f. (remarquer que $\varphi(0) = 0$)
- 0.5 pt 4. Étudier les branches infinies de la courbe (C_f) .
- $0.5 \text{ pt } 5. \text{ Construire } (C_f).$

Partie III) On pose
$$F(x) = \int_0^x f(t)dt$$
 et $G(x) = \int_0^x t^2 e^{-t}dt$

- $0.75 \text{ pt } 1. \text{ Calculer } G(x) \text{ et } \lim_{x \to \infty} G(x).$
- 0,25 pt 2. Montrer que la fonction F est croissante sur \mathbb{R}^+ .
- 0,5 pt 3(a) Montrer que $(\forall t \in [\ln 2, +\infty[) \quad f(t) \le 2t^2 e^{-t}]$
- 0,5 pt (b) Montrer que la fonction F est majorée sur \mathbb{R}^+ .

Partie IV)

 $\overline{\text{On admet que }}\lim_{x\to+\infty}F(x)=L, \text{ où }L\in\mathbb{R}$

0,25 pt 1(a) Montrer que
$$(\forall n \in \mathbb{N}^*)(\forall x \in \mathbb{R}^*) \frac{1}{e^x - 1} = \frac{e^{-nx}}{e^x - 1} + \sum_{n=1}^n e^{-px}$$
.

0.5 pt (b) Montrer que
$$(\forall n \in \mathbb{N}^*)(\forall x \in \mathbb{R}^+)$$
 $0 \le \int_0^x f(t)e^{-nt}dt \le \frac{\alpha(2-\alpha)}{n}$.

- 0,5 pt (c) Calculer $I_n(x) = \int_0^x t^2 e^{-nt} dt$ pour tout $n \in \mathbb{N}^*$ (on pourra utiliser l'intégration par partie)
- 0,25 pt (d) Déterminer $\lim_{x\to+\infty} I_n(x)$.

0,5 pt 2(a) Montrer que
$$(\forall n \in \mathbb{N}^*)(\forall x \in \mathbb{R}^+)$$
 $\int_0^x f(t)e^{-nt}dt = F(x) - \sum_{p=1}^n I_p(x)$

0,25 pt (b) En déduire que la fonction $x \mapsto \int_0^x f(t)e^{-nt}dt$ admet une limite fini lorsque $x \to +\infty$.

- 0,5 pt (c) On pose pour tout $n \in \mathbb{N}^*$, $L_n = \lim_{x \to +\infty} \int_0^x f(t)e^{-nt}dt$. Montrer que $L - L_n = 2(1 + \frac{1}{2^3} + \dots + \frac{1}{n^3})$.
- 0,25 pt (d) Montrer que la suite $(L_n)_{n\in\mathbb{N}^*}$ est convergente.(utiliser la question IV) 1-b)
 - 0,5 pt (e) On considère la suite $(U_n)_{n\in\mathbb{N}^*}$ définie par : $U_n = 1 + \frac{1}{2^3} + \cdots + \frac{1}{n^3}$ Montrer que $(U_n)_{n\in\mathbb{N}^*}$ est convergente et que $\lim_{n\to+\infty} U_n = \frac{L}{2}$.