

Vectors – Equations of Lines

No calculator allowed on all exercises

- ♦ All of the exercises are suitable for both Maths SL & Maths HL. ♦
- **1.** (a) Find a vector equation, in the form $\vec{r} = \vec{a} + \lambda \vec{b}$, of the line passing through the points A(2, -3) and B(-5, 2).
 - (b) Does the point C(-12,7) lie on the line AB? Explain.
- **2.** A line passes through the point (-1, 4, 0) and is parallel to the vector $2\mathbf{i} 6\mathbf{j} + \mathbf{k}$. The point *P* with coordinates (2, a, b) lies on the line. Find the value of *a* and the value of *b*.
- **3.** A line passes through the point (-3, 5) and its direction is perpendicular to the vector $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$. Find the equation of the line in the form ax + by = c where a, b and c are integers to be determined.
- **4.** Consider the two lines L_1 and L_2 given as follows:

$$L_{1}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ -1 \\ -7 \end{pmatrix} \qquad L_{2}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \\ -6 \end{pmatrix} + \mu \begin{pmatrix} -6 \\ 2 \\ -4 \end{pmatrix}$$

- (a) P is the point on L_1 when $\lambda = 1$. Find the position vector of P.
- (b) Show that P is also on L_2 .
- (c) A third line, L_3 , has a direction vector of $\begin{pmatrix} a \\ 3 \\ c \end{pmatrix}$. If L_1 and L_3 are parallel, find the value of a and the value of c.
- **5.** Position vectors \overrightarrow{OP} and \overrightarrow{OR} are $2\mathbf{i} \mathbf{j} + 3\mathbf{k}$ and $6\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ respectively. Show that the line $\mathbf{r} = 4\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + t(5\mathbf{i} 3\mathbf{j} + \mathbf{k})$ is a perpendicular bisector of the line segment [PR].
- **6.** The two lines $\vec{r_1} = \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ 0 \end{pmatrix}$ and $\vec{r_2} = \begin{pmatrix} 3 \\ -10 \\ -6 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -5 \\ -4 \end{pmatrix}$ intersect at point A. Find the coordinates of A.
- **7.** A, B and C are points with position vectors $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $2\mathbf{j} + 2\mathbf{k}$ and $3\mathbf{i} \mathbf{j} + \mathbf{k}$ respectively. Find a vector equation of each of the following lines:
 - (a) line through the origin parallel to \overrightarrow{AB} ;
 - (b) line through C parallel to $\stackrel{\rightarrow}{AB}$;
 - (c) line through B and C.