Question Number	Answer	Mark
6(a)	The only correct answer is D	(1)
	A is not correct because it is the 2 nd most soluble	
	B is not correct because it is the 3 rd most soluble	
	<i>C</i> is not correct because it is the least soluble	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)(i)	An answer that makes reference to the following point:	Allow magnesium hydroxide is in a different phase / state (from the aqueous ions)	(1)
	 the concentration of a solid / Mg(OH)₂ is constant / unchanged / changes very little 	Ignore solids do not appear in K _c expressions / just `it is solid'	
		Ignore solid does not affect the concentration of the solution	
		Ignore it is a heterogeneous equilibrium	
		Ignore it is difficult to measure the concentration of a solid	
		Do not award the solid does not have a concentration	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)(ii)	• $mol^3 dm^{-9}$	Allow	(1)
		dm ⁻⁹ mol ³	
		mol³/dm9	
		Ignore any working before the answer	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)(iii)	• use of $\Delta_{sol}H = \Delta_{hyd}H[Mg^{2+}(aq)] + 2\Delta_{hyd}H[OH^{-}(aq)] - \Delta_{latt}H[Mg(OH)_{2}(s)]$ (1)	Example of calculation $\Delta_{sol}H = -1920 + 2(-460) - (-2842)$ Allow this shown on a Hess cycle	(2)
	• calculation of $\Delta_{sol}H$ (1)	$\Delta_{sol}H = (+)2 (kJ mol^{-1})$ Allow 2000 J mol ⁻¹ Correct answer with no working scores 2	

Question Number	Answer	Mark
6(b)(iv)	The only correct answer is D	(1)
	A is not correct because it should not be linear and should level off	
	B is not correct because it should not increase in that way and should level off	
	<i>C</i> is not correct because it should not be horizontal	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)(v)	An answer that makes reference to the following points:	Mark independently	(4)
	 Addition of magnesium sulfate solution: equilibrium position shifts to the left / in the backwards direction (1) 	Allow more magnesium hydroxide precipitates / forms	
	 because increased concentration / amount of magnesium ions / Mg²⁺((aq)) (1) 	Allow more Mg ²⁺ ions present	
	 Addition of dilute hydrochloric acid: equilibrium shifts to the right / in the forwards direction (1) 	Allow more magnesium hydroxide dissolves / dissociates	
	 because the hydrogen ions / H⁺((aq)) react with / 	Allow $H^+((aq)) + OH^-((aq)) \rightarrow H_2O((I))$	
	neutralise / removes the hydroxide ions / OH ((aq)) (1)	Allow magnesium hydroxide reacts with / is neutralised by acid / equation to show this	
		Allow acid / HCl reacts with / neutralises / removes hydroxide ions	
		Penalise reference to K_c changing once only	

(Total for Question 6 = 10 marks)