

 $r(2.4)$

 $r(2)$ $r(1.5)$

Motion in Two Dimensions: Position, Displacement & Velocity

Position Vectors in space

1. In 2D space, a position vector \vec{r} is written as:

$$
\vec{r} = x\hat{i} + y\hat{j}
$$

where x & y are the scalar components of the vector.

(in 3D space, include the Z component such that: $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$)

- 2. Position vector \vec{r} is represented as a line from origin to point (x, y) in the XY plane. (See different r representations in the diagram above) \mathbf{y}
- 3. Magnitude of the position vector

4. Direction: The angle θ that \vec{r} makes with the positive x-axis can be found as:

$$
\theta = \tan^{-1}\left(\frac{y}{x}\right)
$$

x

Position vector "r" on XY plane at various times

EEUD ÉSIENE ÉGELET

Displacement $\Delta \vec{r}$

1. Displacement, denoted as $\Delta \vec{r}$ is the change in position from $\vec{r_1}$ to \vec{r}_2 . It is a vector quantity

$$
\Delta \vec{r} = \vec{r_2} - \vec{r_1} = \Delta x \hat{\imath} + \Delta y \hat{\jmath}
$$

where Δx and Δy are the changes in the x and y components.

(in 3D, include displacement in Z direction as well $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 = \Delta x \hat{\imath} + \Delta y \hat{\jmath} + \Delta z \hat{k}$)

Magnitude of Displacement: $^{2} + (\Delta y)^{2}$ Direction of Displacement: $\tan \theta = \frac{\Delta y}{\Delta x}$

i,

Average Velocity

1.
$$
\overrightarrow{V_{avg}} = \frac{Displacement}{Time}
$$

$$
\overrightarrow{v_{\text{avg}}} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x \hat{\imath} + \Delta y \hat{\jmath}}{\Delta t}
$$

 $\overrightarrow{v_{\text{avg}}} = \frac{\Delta x}{\Delta t}$ $\frac{\Delta x}{\Delta t} \hat{\imath} + \frac{\Delta y}{\Delta t}$

(In 3D, just add ΔZ \hat{k} component)

The direction of the average velocity is the same as the direction of displacement vector.

2. Magnitude of average velocity:

$$
\boxed{|\overrightarrow{v_{\text{avg}}}| = \frac{|\Delta \vec{r}|}{\Delta t}}
$$

- 3. The magnitude of average velocity is the average speed
- 4. Zero Displacement: If the displacement is zero (i.e., starting and ending at the same point), the average velocity will also be zero, regardless of the path taken.

www.thesciencecube.com

EEUS ÉSIERSÉ EURE

Instantaneous Velocity

- 1. Velocity at an instant of time. It represents the actual velocity of the particle at a given instant, reflecting how its position is changing with time
- 2. If position vector changes from \vec{r}_1 to \vec{r}_2 , with displacement $\Delta \vec{r}$ in *time* Δt . Instantaneous velocity is approached as Δt shrinks towards zero

$$
\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t}
$$

$$
\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j}
$$

3. Components:

$$
\boxed{v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}}
$$

Direction: Same as the tangent at that point.

(in 3D, include displacement in Z direction as we

4. Magnitude: The magnitude of instantaneous velocity can be found as:

$$
|\vec{v}| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}
$$

www.thesciencecube.com

