- The Starfinder (2102-D) is an instrument used for identifying stars and planets based on their azimuth (bearing) and altitude (height).
- The key to star identification problems is three-fold:
- Use the correct hemisphere on the backing plate (North or South)
- Use the correct plate based on latitude (all USCG Problems use the 25° plate).
- Find the LHA of Aries (based on the GHA of Aries and your DR longitude).
- The vast majority of problems on USCG exams are of major navigational stars. However, there are some problems in the database seeking minor stars. For these minor star problems, the procedure is the same but requires an extra step at the end of looking up the star's right ascension (RA) and declination (dec) in the back of the Nautical Almanac.

SID D1. On 17 March your 1845 DR position is latitude $25^{\circ} 10.0^{\prime} \mathrm{N}$, longitude $66^{\circ} 48.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $320^{\circ} \mathrm{T}$ at an observed altitude (ho) of $50^{\circ} 02.9^{\prime}$. The chronometer reads 10 h 47 m 49 s and is 1 m 54 s fast. What star did you observe?

Answer: Mirfak.
Step 1: Determine the correct chronometer time of the sight.
Chronometer: 10h 47m 49s
Chronometer error: 1m 54s fast
Correct chronometer time: 10:47:49-00:01:54 $=10: 45: 55$
Step 2: Determine the GMT of the sight.
Chronometer: 10h 45m 55s
1845 ZT DR Longitude: $66^{\circ} 48.0^{\prime}$ W corresponds to (+4 ZD)
GMT of sight: 22:45:55
Step 3: Determine the GHA of Aries for the time of the sight.
GHA Aries (hours): $145^{\circ} 23.1^{\prime}$
GHA Aries (increment): $11^{\circ} 30.6^{\prime}$
GHA Aries (Total): $145^{\circ} 23.1^{\prime}+11^{\circ} 30.6^{\prime}=156^{\circ} 53.7^{\prime}$
Step 4: Determine the LHA of Aries for the time of the sight. GHA Aries: $156^{\circ} 53.7^{\prime}$
DR Longitude: $66^{\circ} 48.0^{\prime} \mathrm{W}$ (W longitude subtract, E longitude add)
LHA Aries: $156^{\circ} 53.7^{\prime}-66^{\circ} 48.0^{\prime} \mathrm{W}=\underline{90^{\circ} 05.7^{\prime}}$

45	SUN	PLANETS	ARIES
55	11	28.8	11
56	11	29.0	
57	11	29.0	11

Step 5: Set up the Starfinder.
LHA Aries: $90^{\circ} 05.7^{\prime}$
Observer's Latitude (nearest incremental degree): $25^{\circ} \mathrm{N}$
Step 6: Search the Starfinder field based on the given altitude and azimuth.
Observed altitude (ho): $50^{\circ} 02.9^{\prime}$
Observed azimuth: $320^{\circ} \mathrm{T}$
Step 7: Identify the observed body.
Mirfak is the closest body to the observed altitude and azimuth.

SID D2. On 23 September, while taking stars for an evening fix, an unidentified star is observed bearing $261^{\circ} \mathrm{T}$ at an observed altitude (ho) of $61^{\circ} 35^{\circ}$. Your 1836 zone time DR position is latitude $25^{\circ} 18^{\prime} \mathrm{S}$, longitude $162^{\circ} 36^{\prime} \mathrm{E}$. The chronometer reads 07 h 34 m 12 s , and the chronometer error is 1 m 54 s slow. Your vessel is steaming on a course of $230^{\circ} \mathrm{T}$ at a speed of 18 knots. What star did you observe?

Answer: Antares.
Step 1: Determine the correct chronometer time of the sight.
Chronometer: 7h 34m 12s
Chronometer error: 1 m 54 s slow
Correct chronometer time: 07:34:12 $+00: 01: 54=07: 36: 06$
Step 2: Determine the GMT of the sight.
Chronometer: 07h 36m 06s
1836 ZT DR Longitude: $162^{\circ} 36.0^{\prime}$ E corresponds to (-11 ZD)
GMT of sight: 07:36:06
Step 3: Determine the GHA of Aries for the time of the sight.
GHA Aries (hours): $107^{\circ} 02.4^{\prime}$
GHA Aries (increment): $9^{\circ} 03.0^{\prime}$
GHA Aries (Total): $107^{\circ} 02.4^{\prime}+9^{\circ} 03.0^{\prime}=116^{\circ} 05.4^{\prime}$

Step 4: Determine the LHA of Aries for the time of the sight.
GHA Aries: $116^{\circ} 05.4^{\prime}$
DR Longitude: $162^{\circ} 36.0^{\prime} \mathrm{E}$ (E longitude add, W longitude subtract)
LHA Aries: $116^{\circ} 05.4^{\prime}+162^{\circ} 36.0^{\prime} \mathrm{W}=\underline{278^{\circ}} 41.4^{\prime}$
Step 5: Set up the Starfinder.
LHA Aries: $278^{\circ} 41.4^{\prime}$
Observer's Latitude (nearest incremental degree): $25^{\circ} \mathrm{S}$
Step 6: Search the Starfinder field based on the given altitude and azimuth.
Observed altitude (ho): $61^{\circ} 35.0^{\prime}$
Observed azimuth: $261^{\circ} \mathrm{T}$

36	$\left\lvert\, \begin{gathered} \text { SUN } \\ \text { PLANETS } \end{gathered}\right.$	ARIES
00	900.0	901.5
01	900.3	901.7
02	900.5	902.0
03	900.8	902.2
04	901.0	902.5
05	901.3	902.7
06	901.5	903.0
07	901.8	903.2
08	902.0	903.5
09	902.3	903.7

Step 7: Identify the observed body.
Antares is the closest body to the observed altitude and azimuth.

Star Identification Problems

SID D3. On 12 June 1981, your DR 1845 position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $313^{\circ} \mathrm{T}$ at a sextant altitude (Hs) of $14^{\circ} 56.3^{\prime}$. The index error is 0.5^{\prime} on the arc and the height of eye is 45 feet. The chronometer reads 09:43:27 and the chronometer error is 1 m 46 s slow. What star did you observe?

Answer: Menkalinan (Minor Star)
Step 1: Determine the correct chronometer time of the sight.
Chronometer: 9h 43m 27s
Chronometer error: 1m 46s slow
Correct chronometer time: 09:45:13
Step 2: Determine the GMT of the sight.
1845 ZT DR Longitude: $46^{\circ} 52^{\prime} \mathrm{W}$ corresponds to (+3 ZD)
GMT of sight: $\underline{21: 45: 13}$
Step 3: Determine the GHA of Aries for the time of the sight.
GHA Aries (hours): $216^{\circ} 05.6^{\prime}$
GHA Aries (increment): $11^{\circ} 20.1^{\prime}$
GHA Aries (Total): $227^{\circ} 25.7^{\prime}$
Step 4: Determine the LHA of Aries for the time of the sight.
GHA Aries: $227^{\circ} 25.7^{\prime}$
DR Longitude: $46^{\circ} 52^{\prime} \mathrm{W}$ (E longitude add, W longitude subtract) LHA Aries: $180^{\circ} 33.7^{\prime}$

Step 5: Set up the Starfinder.
LHA Aries: $180^{\circ} 33.7^{\circ}$
Observer's Latitude (nearest incremental degree): $25^{\circ} \mathrm{S}$
Step 6: Determine the Height Observed (Ho) by applying index error,

45	SUN	
PLANETS		

$$
\begin{aligned}
& \mathrm{Hs}=14^{\circ} 56.3^{\prime} \\
& \mathrm{IC}=+0.5^{\prime} \\
& \text { Dip }=-6.5^{\prime} \\
& \mathrm{Ha}=14^{\circ} 50.3^{\prime} \\
& \text { Alt Corr }=-3.6^{\prime} \\
& \mathrm{Ho}=14^{\circ} 46.7^{\prime}
\end{aligned}
$$

Step 7: Make a mark on the Starfinder plate at the appropriate Ho and Azimuth. Observed altitude (ho): $14^{\circ} 46.7^{\prime}$
Observed azimuth: $313^{\circ} \mathrm{T}$

Step 8: Find the Right Ascension and Declination of the body. Put the red template on the Starfinder.
Align 0° line with mark you made in Step 8.
RA is the outer number on the Starfinder $=87^{\circ}$
Declination is based on location on the red plate $=45^{\circ} \mathrm{N}$
Step 9: Find the SHA.
$\mathrm{SHA}=360-\mathrm{RA}=273^{\circ}$
Step 10: Look in the back of the Nautical Almanac for the best match (note more accuracy can be obtained by averaging the 25° and 15° plate, which is rarely necessary to answer the exam question).
B Auriga, or Menkalinan.

272			STARS,			JANUARY-JUNE									
	Name and Number	S.H.A.								Dec.					
			JAN.	FEB.	MAR.	APR.	MAY	JUNE		JAN.	FEB.	MAR.	APR.	MAY	JUNE
		-													
1.6	a Geminorum	2.46	39.0	39.0	39-1	39-2	39.4	39.4	N. 31	55.7	55.8	55-8	55.9	55.9	55^{-8}
$3 \cdot 3$	* Puppis	2.47	$50 \cdot 2$	50-2	$50-4$	50-6	50.8	$50 \cdot 9$	S. 43	15.9	$16 \cdot 0$	$16 \cdot 1$	16.1	16.1	16.0
$3 \cdot 1$	β Canis Minoris	248	28 -0	28 -0	28-1	28-2	$28 \cdot 3$	28.4	N. 8	19.6	$19 \cdot 6$	19.5	19.6	$19 \cdot 6$	19.6
$2 \cdot 4$	η Canis Majoris	249	096	096	097	09-9	10.0	10.1	S. 29	$16 \cdot 1$	$16 \cdot 2$	16.3	16.3	$16 \cdot 2$	16.1
$2 \cdot 7$	π Puppis	250	52.6	52.6	52.8	53-0	$53 \cdot 1$	$53 \cdot 2$	S. 37	03.9	04°	04-1	04-1	04'I	04'0
	δ Canis Majoris	253	05.5	$05 \cdot 5$	056	05-8	05.9	06.0	S. 26	21.9	22.0	22.1	$22 \cdot 1$	$22 \cdot 0$	21'9
$3 \cdot 1$	o Canis Majoris	254	$26 \cdot 3$	$26 \cdot 3$	$26 \cdot 4$	26-6	$26 \cdot 7$	26.8	S. 23	$48 \cdot 4$	$48 \cdot 6$	$48 \cdot 6$	48-6	$48 \cdot 6$	48-5
I.6	\& Canis Majoris 19	255	31.6	31.6	317	31-9	32.0	$32 \cdot 1$	S. 28	56.9	57.0	$57 \cdot 1$	$57 \cdot 1$	$57^{\circ} \mathrm{O}$	$56 \cdot 9$
2.8	τ Puppis	257	$37 \cdot 6$	$37 \cdot 7$	37.9	3^{88}-1	38.4	$3^{8} \cdot 5$	S. 50	357	35,8	$35 \cdot 9$	$35 \cdot 9$	35.8	357
-1.6	a Canis Majoris 18	258	$55 \cdot 2$	$55 \cdot 2$	55-3	55.5	55.6	55.6	S. 16	41.6	$41 \cdot 7$	41'7	4177	41.6	41'5
$1 \cdot 9$	γ Geminorum	260	$50 \cdot 6$	$50 \cdot 7$	50.8	50.9	51.0	51.0	N. 16	$24^{\prime 9}$	24.9	2.49	24.9	24*9	24.9
-0.9	${ }^{1}$ Carina $\quad 17$	264	$06 \cdot 6$	$06 \cdot 7$	06.9	07-2	07.4	07.5	S. 52	41-3	41.4	41.5	41-5	41-4	4I'3
2.0	β Canis Majoris	264	31'9	31 '9	32.0	$32 \cdot 2$	32-3	$32 \cdot 3$	S. 17	56.9	$57 \cdot 0$	57.1	57.0	$57^{\circ} \mathrm{O}$	$56 \cdot 9$
$2 \cdot 7$	θ Aurigre	270	23.4	$23 \cdot 5$	23.7	23.8	$23-9$	$23 \cdot 9$	N. 37	127	12.7	$12 \cdot 7$	12.7	12.7	$12 \cdot 7$
$2 \cdot 1$	β Aurigre	270	27.8	27.9	28.0	$28 \cdot 2$	$28 \cdot 3$	$28 \cdot 3$	N. 44	568	56.8	$56 \cdot 9$	$56-8$	$56 \cdot 8$	$56 \cdot 7$
Var. ${ }^{+}$	a Orionis 16	271	$27 \cdot 7$	$27 \cdot 8$	27.9	28.0	$28-1$	-	N. 7	24^{1}	24^{11}	$24^{\prime} 1$	$24 \cdot 1$	24^{-1}	$24^{\prime 2}$
$2 \cdot 2$	κ Orionis	273	17.0	17.1	17.2	$17 \cdot 4$	17.4	17.4	S. 9	40-7	$40 \cdot 8$	$40 \cdot 8$	$40 \cdot 8$	40-7	$40 \cdot 6$
I'9	ζ Orionis	275	02.9	02.9	03-1	$03 \cdot 2$	03.3	$03 \cdot 2$	S. 1	57.3	$57 \cdot 3$	57.3	$57 \cdot 3$	$57 \cdot 3$	$57 \cdot 2$
2.8	a Columbar	275	15.4	15'5	15.6	15.8	15-9	15.9	S. 34	05.3	$05 \cdot 4$	$05 \cdot 4$	05.4	05.3	05.I
30	ζ Tauri	275	$52 \cdot 2$	52.3	52.4	52.6	52.6	52.6	N. 21	078	07.8	$07 \cdot 8$	$07-8$	07.8	07.8

