TT LIVE CLASS #4

(a)

(b)

(c)

Q1.

The diagram represents two of the stages of aerobic respiration that take place in a mitochondrion.

(3) (Total 5 marks)

TT LIVE CLASS #4

Q2.

The diagram gives an outline of the process of aerobic respiration.

TT LIVE CLASS #4

(a)	Nar	me substances X , Y and Z .	
	X _		
	Υ		
	Z		
<i>(.</i>)			(3)
(b)	Give	e the location of each of the following in a liver cell.	
	(i)	Glycolysis	
	(ii)	The Krebs cycle	(2)
(c)	(i)	Write the letter A on the diagram to show one step where ATP is used.	
	(ii)	Write the letter ${\bf B}$ on the diagram at ${\bf two}$ steps where ATP is produced.	(3)
(d)	Apc	art from respiration, give three uses of ATP in a liver cell.	
	1		
	2		
	3		(3)
		/Tabul 1	1
		(lotal 1	1 marks)

TT LIVE CLASS #4

1	`	\mathbf{a}	
l	v	.3	

(a) The table contains some statements relating to biochemical processes in a plant cell. Complete the table with a tick if the statement is true or a cross if it is not true for each biochemical process.

Statement	Glycolysis	Krebs cycle	Light-dependent reaction of photosynthesis
NAD is reduced			
NADP is reduced			
ATP is produced			
ATP is required			

(4)

(1)

(b)	An investigation was carried out into the production of ATP by mitochondria. ADP,
	phosphate, excess substrate and oxygen were added to a suspension of isolated
	mitochondria.

(i)	Suggest the substrate used for this investigation.

(ii)	Explain why the concentration of oxygen and amount of ADP fell during the investigation.

(2)

(iii) A further investigation was carried out into the effect of three inhibitors, **A**, **B** and **C**, on the electron transport chain in these mitochondria. In each of three experiments, a different inhibitor was added. The table shows the state of the electron carriers, **W-Z**, after the addition of inhibitor.

Inhibitor	Electron carrier				
added	w	x	Y	Z	
Α	oxidised	reduced	reduced	oxidised	
В	oxidised	oxidised	reduced	oxidised	
С	reduced	reduced	reduced	oxidised	

Give the order of the	electron	carriers	in this	electron	transport	chain.
Explain your answer.					-	

Order		 	
Explana	tion	 	

TT LIVE CLASS #4

Ql.			
(a)	pyruvate	1	
(b)	Krebs cycle	1	
(c)	ATP formed as electrons pass along transport chain oxygen is terminal electron acceptor / accepts electrons from electron transport chain / electrons cannot be passed along electron transport chain if no O_2 to accept them forms H_2O / accepts H^+ from reduced NAD / FAD / oxidises reduced NAD / FAD	3	
		· ·	[5]
Q2.	X = Carbon dioxide		
	Y = Acetyl coenzyme A (ACCEPT Acetyl CoA) Z = Water		
		3	
(b)	(i) Cytoplasm	1	
	(ii) Mitochondrion (IGNORE named part)	1	
(c)	On the diagram:		
	(i) 'A' (ATP used) – <u>between</u> glucose and triose phosphate	1	
	(ii) 'B' Any two from:		
	(ATP produced) – between triose phosphate and pyruvate in Krebs cycle from electron carriers (to right of bracket & not below grey box)	max 2	
(d)	Any three from:		
	Source of energy / of phosphate Active transport Phagocytosis / endo- / exocytosis / pinocytosis Bile production Cell division / mitosis Synthesis of: glycogen	2	
		max 3	

TT LIVE CLASS #4

Q3.

(a)

Statement	Glycolysis	Krebs cycle	Light-dependent reaction of photosynthesis
NAD is reduced	✓	1	
NADP is reduced			✓
ATP is produced	✓	✓	✓
ATP is required	✓		

4

(b) (i) pyruvate / succinate / any suitable Krebs cycle substrate

1

(ii) ADP and phosphate forms ATP oxygen used to form water / as the terminal acceptor

2

2

(iii) Y X W Z order of carriers linked to sequence of reduction / reduced carriers cannot pass on electrons when inhibited

[9]