

Name:

2020 Module 1: Progress Check 1

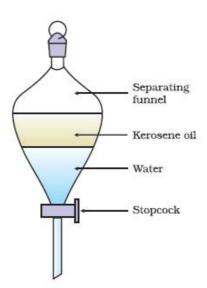
Chemistry

General Instructions

- Reading time 3 minutes
- Working time 30min
- · Write using black pen
- · Draw diagrams using pencil
- · Calculators approved by NESA may be used
- A formulae sheet, data sheet and Periodic Table are provided at the back of this paper

Total marks: 15

Section I - 5 marks


- Attempt Questions 1–5
- · Allow about 9 minutes for this section

Section II - 10 marks

- Attempt Questions 6–8
- · Allow about 18 minutes for this section

- 1) Which of the following correctly identifies a list of substances that are homogeneous?
 - a) Sugar, aluminium foil, black coffee and paint
 - b) Salad dressing, aluminium foil, alcohol and soil
 - c) City air, sugar, sugar water, paint and iron
 - d) Black coffee, aluminium foil, iron, alcohol and saltwater
- 2) Which example mixture stated below would use distillation to separate into separate components?
 - a) A mixture of lead shot and aluminium pellets
 - b) A mixture of water and olive oil
 - c) A mixture of liquid heptane (B.P 98°C) and liquid heptanol (B.P 176°C)
 - d) A mixture of sugar and iron filings
- 3) A student saw the following piece of equipment in the lab. She examined it and came to the conclusion that the main property of the mixture being used to separate the components was?

- a) Particle size
- b) Boiling Point
- c) Density
- d) Colour

4) Ben wanted to make some copper sulfate crystals. He started by reacting copper oxide with sulfuric acid. This produced copper sulfate in solution and left some solid excess copper oxide in the test tube.

He then used the technique X to remove the copper oxide and then used the technique Y to reduce the volume of the solution down by half. The last step was to use technique Z to form the copper sulfate crystals.

Which of the following correctly identifies techniques X, Y and Z with the correct physical separation techniques?

- a) Technique X = distillation, technique Y = decantation and technique Z= evaporation
- b) Technique X = filtration, technique Y = decantation and technique Z= evaporation
- c) Technique X = decantation, technique Y = filtration and technique Z= evaporation
- d) Technique X = filtration, technique Y = evaporation and technique Z= evaporative crystallisation
- 5) A haematologist was testing blood and was required to separate out the blood cells from the plasma (liquid that carries the blood cells) as this liquid contains the blood proteins, glucose, hormones and dissolved ions. In order to do this separation, she needed to use which technique?
 - a) Distillation
 - b) Centrifugation
 - c) Evaporation
 - d) Electrophoresis (advanced sieving technique to separate a mixture of proteins)

Section II, 10 marks Attempt Questions 6–8 Allow about 18 minutes for this section

0	refine the following terms and identify the separation technique it is relate to:	(6 marl
	Miscible liquid:	
	Technique:	
)	Immiscible liquid:	
	Technique:	
i)	Filtrate:	
	Technique:	
·)	Distillate:	
	Technique:	
)	Homogenous:	
	Technique:	
)	Heterogenous:	
	Technique:	

7) Label the diagram for this technique.

(2 marks)

www.bigstock.com · 321821785

8) Explain how the properties of solubility and size are used in this technique to separate components of a mixture. (2 marks)

Chemistry

FORMULAE SHEET

$n = \frac{m}{MM}$	$c = \frac{n}{V}$	PV = nRT
$q = mc\Delta T$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$pH = -\log_{10}[H^+]$
$pK_a = -\log_{10}[K_a]$	$A = \varepsilon lc = \log_{10} \frac{I_o}{I}$	
Avogadro constant, N_A		$ 6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
-	at 0°C (273.15 K)	22.71 L
	at 25°C (298.15 K)	24.79 L
Gas constant		8.314 J mol ⁻¹ K ⁻¹
Ionisation constant for water at	t 25°C (298.15 K), K _w	1.0×10^{-14}

DATA SHEET

Solubility constants at 25°C

Compound	K_{sp}	Compound	K_{sp}
Barium carbonate	2.58×10^{-9}	Lead(II) bromide	6.60×10^{-6}
Barium hydroxide	2.55×10^{-4}	Lead(II) chloride	1.70×10^{-5}
Barium phosphate	1.3×10^{-29}	Lead(II) iodide	9.8×10^{-9}
Barium sulfate	1.08×10^{-10}	Lead(II) carbonate	7.40×10^{-14}
Calcium carbonate	3.36×10^{-9}	Lead(II) hydroxide	1.43×10^{-15}
Calcium hydroxide	5.02×10^{-6}	Lead(II) phosphate	8.0×10^{-43}
Calcium phosphate	2.07×10^{-29}	Lead(II) sulfate	2.53×10^{-8}
Calcium sulfate	4.93×10^{-5}	Magnesium carbonate	6.82×10^{-6}
Copper(II) carbonate	1.4×10^{-10}	Magnesium hydroxide	5.61×10^{-12}
Copper(II) hydroxide	2.2×10^{-20}	Magnesium phosphate	1.04×10^{-24}
Copper(II) phosphate	1.40×10^{-37}	Silver bromide	5.35×10^{-13}
Iron(II) carbonate	3.13×10^{-11}	Silver chloride	1.77×10^{-10}
Iron(II) hydroxide	4.87×10^{-17}	Silver carbonate	8.46×10^{-12}
Iron(III) hydroxide	2.79×10^{-39}	Silver hydroxide	2.0×10^{-8}
Iron(III) phosphate	9.91×10^{-16}	Silver iodide	8.52×10^{-17}
		Silver phosphate	8.89×10^{-17}
		Silver sulfate	1.20×10^{-5}

Infrared absorption data

Bond	Wavenumber/cm ⁻¹
N—H (amines)	3300–3500
O—H (alcohols)	3230–3550 (broad)
С—Н	2850–3300
O—H (acids)	2500–3000 (very broad)
C≡N	2220–2260
c=o	1680–1750
c=c	1620–1680
с—о	1000–1300
С—С	750–1100

¹³C NMR chemical shift data

0 1111111	ciiciiiicui siiiic	autu
Type of carbon		δ/ppm
$\begin{array}{c c} -C-C-\\ \end{array}$		5–40
$R - C - Cl \alpha$	or Br	10–70
R - C - C - O	_	20–50
R - C - N		25–60
- C - O -	alcohols, ethers or esters	50-90
c = c		90–150
$R - C \equiv N$		110–125
		110–160
R — C — O	esters or acids	160–185
R — C — O	aldehydes or ketones	190–220

UV absorption (This is not a definitive list and is approximate.)

Chromophore	λ_{\max} (nm)
С—Н	122
С-С	135
c=c	162

Chromophore	λ_{\max} (nm)
C≡C	173 178
C_C	196 222
C—Cl	173
C—Br	208

Some standard potentials

		F	
$K^+ + e^-$	\rightleftharpoons	K(s)	–2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	–2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	–2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	–2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^-$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}H_2(g) + OH^-$	-0.83 V
$Zn^{2+} + 2e^-$	\rightleftharpoons	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^-$	\rightleftharpoons	Ni(s)	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^-$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH ⁻	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^{-}$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + e^{-}$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	\rightleftharpoons	F ⁻	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for the standard potentials. Some data may have been modified for examination purposes.

C	He He	4.003 Helium	10	Ne	20.18	Neon	18	Ar	39.95	Argon	36	Kr	83.80	Krypton	54	Xe	131.3	Xenon	98	Rn		Radon	118		Oganesson
L			6	Щ	19.00	Fluorine	17	ご	35.45	Chlorine	35	Br	79.90	Bromine	53	Ι	126.9	Iodine	85	At		Astatine	117	$\Gamma_{\rm S}$	Tennessine
			~	0	16.00	Oxygen	16	S	32.07	Sulfur	34	Se	78.96	Selenium	52	Te	127.6	Tellurium	84	Po		Polonium	116	Lv	
			7	Z	14.01	Nitrogen	15	Ь	30.97	Phosphorus	33	As	74.92	Arsenic	51	Sp	121.8	Antimony	83	Bi	209.0	Bismuth	115	Mc	Moscovium Livermorium
			9	ر ر	12.01	Carbon	14	Si	28.09	Silicon	32	Ge	72.64	Germanium	20	Sn	118.7	Tin	87	Pb	207.2	Lead	114	豆	Flerovium
			2	В	10.81	Boron	13	Al	26.98	Aluminium	31	Сa	69.72	Gallium	65	In	114.8	Indium	81	П	204.4	Thallium	113	Nh	Nihonium
ELEMENTS											30	Zu	65.38	Zinc	48	Cq	112.4	Cadmium	80	Hg	200.6	Mercury	112	Cn	Meitnerium Darmstadtium Roentgenium Copernicium
E ELEN											56	Cn	63.55	Copper	47	Ag	107.9	Silver	79	Au	197.0	Gold	111	Rg	Roentgenium
OF THE		ı									28	Z	58.69	Nickel	46	Pd	106.4	Palladium	78	Pt	195.1	Platinum	110	Ds	Darmstadtium
TABLE		KEY			197.0																192.2				Meitnerium
			mic Number	Symbol	omic Weight	Name					56	Æ	55.85	Iron	44	Ru	101.1	Ruthenium	9/	Os	190.2	Osmium	108	Hs	Hassium
PERIODIC			Ato		Standard Atomic Weig						25			_							186.2				Bohrium
											24	Ċ	52.00	Chromium	42	Mo	95.96	Molybdenum	74	\geqslant	183.9	Tungsten	106	Sg	Seaborgium
											23	>	50.94	Vanadium	41	N _P	92.91	Niobium	73	Та	180.9	Tantalum	105	Db	n Dubnium
											22	Ξ	47.87	Titanium	40	Zr	91.22	Zirconium	72	Ht	178.5			Rf	Actinoids Rutherfordium
		ı									21	Sc	44.96	Scandium	39	7	88.91	Yttrium	57–71			Lanthanoids	89–103		Actinoids
_					9.012	4				_								_							Radium
_	H	1.008 Hydrogen	α	Ξ	6.941	Lithium	11	Na	22.99	Sodium	19	\overline{A}	39.10	Potassium	37	Rb	85.47	Rubidium	55	Cs	132.9	Caesium	87	Fr	Francium

57	28	59	09	61	62	63	64	65	99	29	89	69	70	71
La	Ce	Pr	pN	Pm	Sm	Eu	рŊ	Tb	Dy	Ho	Ë	Tm	Λ	Γn
138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

	Bk Cf		Berkelium Californium Einsteinium
	Am Cm		Americium Curium
94	Pu		Plutonium
93	dN	•	Neptunium
92	Ω	238.0	Uranium
91	Pa	231.0	Protactinium
06	Th	232.0	Thorium
68	Ac		Actinium

Lawrencium

103 Lr

Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version). The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.