
Low-Level Spark:

RDDs



Objective

Resilient Distributed Datasets

Essential proficiency
• Read from external sources

• Convert to/from DataFrames and Datasets
• Difference between RDDs/DataFrames/Datasets



RDDs
Distributed typed collections of JVM objects

The "first citizens" of Spark: all higher-level APIs reduce to RDDs

Pros: can be highly optimized
• partitioning can be controlled

• order of elements can be controlled
• order of operations matters for performance

Cons: hard to work with
• for complex operations, need to know the internals of Spark

• poor APIs for quick data processing

For 99% of operations, use the DataFrame/Dataset APIs



RDDs vs DataFrames Datasets
DataFrame == Dataset[Row]

RDDs over Datasets
• partition control: repartition, coalesce, partitioner, zipPartitions, mapPartitions

• operation control: checkpoint, isCheckpointed, localCheckpoint, cache
• storage control: cache, getStorageLevel, persist

Datasets over RDDs
• select and join!

• Spark planning/optimization before running code

For 99% of operations, use the DataFrame/Dataset APIs

In common
• collection API: map, flatMap, filter, take, reduce etc

• union, count, distinct
• groupBy, sortBy



Takeaways

RDDs vs DataFrames Datasets

val sc = spark.sparkContext

Turn a regular collection into an RDD

val numbersRDD = sc.parallelize(regularCollection)

Read RDD from file

val numbersRDD = sc.textFile("path/to/your/file").map(...) need to process lines

Dataset to RDD

val stocksRDD = stocksDS.rdd all Datasets can access underlying RDDs

RDD to high-level
val stocksDF = stocksRDD.toDF("symbol", "date", "price")
val stocksDS = spark.createDataset(stocksRDD)



Spark rocks


