Draw a picture

There are only 5 formulae... Tools write them down, sub in what you know, see what happens!!

Geometry

Triangles & Sectors

The point D lies on CB such that AD is an arc of a circle with centre A, radius 8 cm. The area of the triangle ABC is 20 cm². Find the area & perimeter of the shaded region.

1. $A = \frac{1}{2} ab \sin \theta$

2. $A = \frac{1}{2} r^2 \theta$

3. $L = r \theta$

4. Cosine Rule

 $a^2 = b^2 + c^2 - 2bc \cos A$

5. Sine Rule

 $\frac{\sin A}{a} = \frac{\sin B}{b}$

6. **Radians**

 $\frac{\pi}{180^\circ} = \text{Rads}$

 $1^\circ \approx 57^\circ$

7. **Circle words**

 - 1. chord makes 2 segments
 - 2. radii make 2 sectors
GEOMETRY INTRODUCTION TO VECTORS

DOING, vectors ...

Thinking about vectors ...

Notation

Vector Magnitude

Unit Vectors

Vector Direction

Parallel Vectors

Adding Vectors

Negative Vectors

Number x vector

You will need

- sin rule
- cosine rule
- SOH CAH TOA
- Pythagoras
- Simplifying Surd
- Simultaneous Equations
- The idea of proof

But more important...

- The ability to draw little diagrams to see what's going on

Applications

- Literally anything at all happening in 2D or 3D Space!
Position vector
Fixed from origin to point A
\[\overrightarrow{OA} = a \]

Relative position vector where is A from the perspective of B?
\[\overrightarrow{BA} = a - b \]

Midpoint AB
\[\overrightarrow{OX} = \frac{\overrightarrow{OA} + \overrightarrow{AB}}{2} \]

Distance \(A \rightarrow B \)
\[= \text{length of vector } \overrightarrow{AB} \]

Angle between vectors

Ratio Theorem
\[x \text{ divides } AB \text{ in the ratio } p:q \]
\[\overrightarrow{OX} = \overrightarrow{OA} + \frac{p}{p+q} \overrightarrow{AB} \]

\[\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AB} + \frac{3}{5} \overrightarrow{BC} \]

A has position vector \((7i - 2j) \). The vectors \(\overrightarrow{AB} \) and \(\overrightarrow{AC} \) are given by \((i - j) \) and \((6i + 4j) \) respectively. The point D divides the line segment BC in the ratio 3:2. Find the coordinates of D and the angle \(\angle BAC \).

\[\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AB} + \frac{3}{5} \overrightarrow{BC} \]

Explain this as it's the key to the solution

\[= \left(\frac{7}{5} \right) + \left(\frac{-1}{5} \right) + \frac{3}{5} \left[\left(\frac{6}{5} \right) \right] \]

\[= \left(\frac{8}{3} \right) + \frac{3}{5} \left(\frac{6}{5} \right) \]

\[= \left(\frac{8}{3} \right) + \left(\frac{3}{3} \right) \]

\[= \left(\frac{11}{3} \right) \]

Coordinates:
You will need

- Relative position vectors
 \[\mathbf{AB} = \mathbf{b} - \mathbf{a} \]
- Vector magnitude (use pythagoras)
- Distance \(AB \)
 - length of relative position vector \(\mathbf{b} - \mathbf{a} \)
- Right angle? … only if pythagoras works!
- Parallel vectors
 \[\mathbf{a} = \lambda \mathbf{b} \]
- Angle between vectors
 \[\theta = \cos^{-1} \]
- Don’t forget SOH CAH TOA

Points/Lines

- Colinear
- Bisect
- \(\perp \) Bisector

Quadrilaterals

- Parallelogram
- Trapezium
- Rectangle
- Rhombus
- Square

Triangles

- Right-angled
- Isosceles
- Similar

Vector Proofs

You need to

(a) learn the conditions for each shape (etc)

(b) practice applying checking the conditions