Les suites numériques. 1 bac SM

Soit $(u_n)_{n\geq 1}$ la suite numérique définie par :

$$u_1 = 0$$
 et pour tout $n \in \mathbb{N}^*$: $u_{n+1} = \frac{5u_n - 3}{3u_n - 1}$

- 1) Démontrer par récurrence que : $(\forall n \in \mathbb{N}^*)$ $u_n \neq 1$
- 2) On pose pour tout $n \in \mathbb{N}^*$: $v_n = \frac{u_n + 1}{u_n 1}$.
 - a) Démontrer que la suite $(v_n)_{n>1}$ est une suite arithmétrique. Préciser la raison et le premier terme.
 - b) Exprimer v_n puis u_n en fonction de n.
 - c) Calculer en fonction de n la somme :

$$v_1 + v_2 + ... + v_n$$

Soit (u_n) la suite numérique définie par :

$$u_0 = -\frac{1}{2}$$
 et pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{u_n}{3-2}$

- 1) Démontrer que : $(\forall n \in \mathbb{N}) u_n < 0$.
- 2) Étudier la monotonie de la suite (u_n) .
- 3) On pose pour tout $n \in \mathbb{N}$: $v_n = \frac{u_n}{u_n 1}$.
 - a) Démontrer que la suite (v_n) est une suite $g_{0n_{\hat{t}}}$. trique. Préciser la raison et le premier terme,
 - b) Exprimer v_n puis u_n en fonction de n.
 - c) Calculer en fonction de n la somme :

$$v_0 + v_1 + v_2 + ... + v_n$$

Soit (u_n) la suite numérique définie par :

$$\begin{cases} u_0 = 0 & \text{et } u_1 = 1 \\ u_{n+2} = \frac{1}{2} u_{n+1} + \frac{1}{2} u_n ; (n \in \mathbb{N}) \end{cases}$$

On pose pour tout $n \in \mathbb{N}$: $v_n = u_{n+1} - u_n$.

- 1) a) Démontrer que la suite (v,) est une suite géométrique. Préciser la raison et le premier terme.
 - b) Écrire v, en fonction de n.
- 2) Pour tout $n \in \mathbb{N}^*$, on pose: $S_n = v_0 + v_1 + ... + v_{n-1}$
 - a) Montrer que: $(\forall n \in \mathbb{N}^*) S_n = u_n$.
 - b) Écrire u, en fonction de n.

Soit (u,) la suite numérique définie par :

$$u_0 = \frac{3}{2}$$
 et pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{u_n^2 + u_n}{u_n^2 + 1}$

- 1) Montrer que: $(\forall n \in \mathbb{N}) u_n > 1$.
- 2) Étudier la monotonie de la suite (u,).
- 3) a) Montrer que: $(\forall n \in \mathbb{N}) u_{n+1} 1 \le \frac{1}{2}(u_n 1)$.
 - b) En déduire que : $(\forall n \in \mathbb{N})$ $0 < u_n 1 \le \left(\frac{1}{2}\right)^n$
- 4) Montrer que:

$$\left(\forall n \in \mathbb{N}^*\right) n < \sum_{k=0}^{n-1} u_k \le n + 2\left(1 - \left(\frac{1}{2}\right)^n\right)$$

EX5

Soit (x_n) la suite numérique définie par :

$$\begin{cases} x_0 = 1 \\ x_{n+1} = 1 + \frac{1}{x_n} ; n \in \mathbb{N} \end{cases}$$

Soit φ la solution positive de l'équation : $x = 1 + \frac{1}{x}$. $(\varphi$ est le nombre d'or).

- 1) Montrer que : $(\forall n \in \mathbb{N}^*) x_n \ge 1$.
- 2) Montrer que pour tout $n \in \mathbb{N}^*$: $x_n \varphi = \frac{\varphi x_{n-1}}{\varphi \cdot x_{n-1}}$.
- 3) En déduire que pour tout $n \in \mathbb{N}^*$:

$$\left|x_{n}-\varphi\right|\leq\frac{\left|\varphi-x_{n-1}\right|}{\varphi}$$

4) En déduire que pour tout $n \in \mathbb{N} : |x_n - \varphi| \le \frac{1}{\varphi^n}$ puis que : $(\forall n \in \mathbb{N}) |x_n - \varphi| \le \left(\frac{2}{3}\right)^n$.

Soit $(u_n)_{n\geq 1}$ la suite numérique définie par :

$$u_n = \sum_{k=1}^n \frac{1}{k\sqrt{k}}$$

- 1) Calculer u_1 , u_2 et u_3 .
- 2) Étudier la monotonie de la suite $(u_n)_{n\geq 1}$.
- 3) Montrer que pour tout entier $p \ge 2$:

$$\frac{1}{\sqrt{p-1}} - \frac{1}{\sqrt{p}} \ge \frac{1}{2p\sqrt{p}}$$

4) En déduire que pour tout $n \in \mathbb{N}^*$: $1 \le u_n \le 3 - \frac{2}{n}$.

1) Montrer que pour tout $x \in [0;1]$:

$$\sqrt{1-x} < 1 - \frac{1}{2}x < \frac{1}{\sqrt{1+x}}$$

2) On considère la suite numérique (u_n) définie par :

$$\begin{cases} u_0 = \frac{1}{2} \\ u_n = \left(1 - \frac{1}{2n}\right) u_{n-1} ; n \in \mathbb{N}^* \end{cases}$$

Exprimer u_n en fonction de n.

3) Pour tout $n \in \mathbb{N}$, on pose:

$$v_n = u_n \cdot \sqrt{n+1}$$
 et $w_n = u_n \cdot \sqrt{n}$

- a) Montrer que la suite (v_n) est strictement décroissante et que pour tout $n \in \mathbb{N}^*$: $u_n < \frac{1}{2\sqrt{1+n}}$.
- b) Montrer que la suite (v_n) est strictement croissante et que pour tout $n \in \mathbb{N}^*$: $\frac{1}{4\sqrt{n}} \le u_n$.

1) Soit x un nombre réel.

Montrer que :
$$(\forall a \in \mathbb{Z}) \ E(x+a) = E(x) + a$$

où $E(x)$ désigne la partie entière de x .

2) Soit x un réel de l'intervalle]1; $+\infty$ [.

On considère la suite numérique $(u_n)_n$, définie par:

$$\begin{cases} u_1 = E(x) \\ u_{n+1} = u_n + E(u_n); n \in \mathbb{N}^* \end{cases}$$

- a) Calculer u_2 et u_3 .
- b) Calculer $E(u_n)$ en fonction de n.
- c) Déterminer l'expression de u, en fonction de n.

Soit (u_n) la suite numérique définie par :

$$\begin{cases} u_0 \in [0;1] \\ u_{n+1} = 2 + u_n - \sqrt{3 + u_n^2} ; n \in \mathbb{N} \end{cases}$$

- 1) Montrer que: $(\forall n \in \mathbb{N})$; $0 \le u_n \le 1$
- 2) Étudier la monotonie de la suite (u,).

3) a) Montrer que pour tout $n \in \mathbb{N}$: $0 \le 1 - u_{n+1} \le (\sqrt{3} - 1)(1 - u_n)$

b) En déduire que pour tout
$$n \in \mathbb{N}$$
:
$$(\sqrt{3} - 1)^n (1 - u_0)$$

b) En déduire
$$u_n \le (\sqrt{3} - 1)^n (1 - u_0)$$

$$0 \le 1 - u_n \le (\sqrt{3} - 1)^n (1 - u_0)$$

4) On pose pour tout $n \in \mathbb{N}^*$:

On pose
$$T_n = \sum_{k=0}^{n-1} \sqrt{3 + u_k^2}$$
 et $T_n = u_n + S_n$

- a) Déterminer la nature de la suite $(T_n)_{n\geq 1}$.
- b) Exprimer S_n en fonction de n, u_0 et u_n .

Soit (u_n) la suite numérique définie par :

$$u_0 = -1$$
 et pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{4 + u_n}{5 - u_n}$

On pose pour tout $n \in \mathbb{N}$: $v_n = \frac{1+u_n}{2-u}$.

- 1) Montrer que la suite (v_n) est arithmétique.
- 2) On considère la suite numérique (w_n) définie par :

$$w_0 = 1$$
 et pour tout $n \in \mathbb{N}$: $w_{n+1} = \left(u_n + \frac{5}{n+1}\right)w_n$.

et on pose:
$$X_n = \frac{w_n}{n+1}$$
 et $S_n = w_0 + w_1 + ... + w_n$

- a) Montrer que la suite (X_n) est géométrique.
- b) Montrer que: $S_n = (n+1)X_{n+1} \sum_{k=0}^{n} X_k$ pour tout $n \in \mathbb{N}$ puis exprimer S_n en fonction de n.