
Limitation of Liability

Information in this document is subject to change without notice.

THE TRADING STRATEGIES, INDICATORS, SHOWME STUDIES, PAINTBAR STUDIES,
PROBABILITYMAP STUDIES, ACTIVITYBAR STUDIES, AND FUNCTIONS (AND PARTS
THEREOF) IN THIS DOCUMENT ARE EXAMPLES ONLY, AND HAVE BEEN INCLUDED SOLELY
FOR EDUCATIONAL PURPOSES. TRADESTATION TECHNOLOGIES, INC. DOES NOT
RECOMMEND THAT YOU USE ANY SUCH TRADING STRATEGIES, INDICATORS, SHOWME
STUDIES, PAINTBAR STUDIES, PROBABILITYMAP STUDIES, ACTIVITYBAR STUDIES, OR
FUNCTIONS (OR ANY PARTS THEREOF), AS THE USE OF ANY SUCH TRADING STRATEGIES,
INDICATORS, SHOWME STUDIES, PAINTBAR STUDIES, PROBABILITYMAP STUDIES,
ACTIVITYBAR STUDIES, AND FUNCTIONS DOES NOT GUARANTEE THAT YOU WILL MAKE
PROFITS, INCREASE PROFITS, OR MINIMIZE LOSSES. THE SOLE INTENDED USES OF THE
TRADING STRATEGIES, INDICATORS, SHOWME STUDIES, PAINTBAR STUDIES,
PROBABILITYMAP STUDIES, ACTIVITYBAR STUDIES, AND FUNCTIONS INCLUDED IN THIS
DOCUMENT ARE TO DEMONSTRATE HOW EASYLANGUAGE CAN BE USED TO DESIGN
THEM.

TRADESTATION TECHNOLOGIES, INC. IS NOT ENGAGED IN RENDERING ANY INVESTMENT
OR OTHER PROFESSIONAL ADVICE. IF INVESTMENT OR OTHER PROFESSIONAL ADVICE IS
REQUIRED, THE SERVICES OF A LICENSED PROFESSIONAL SHOULD BE SOUGHT.

Copyright © 2001 TradeStation Technologies, Inc. All rights reserved. No part of this publication may be re-
produced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or otherwise, without prior written permission of TradeStation Technologies, Inc. Printed
in the United States of America.

TradeStation®, PowerEditor®, EasyLanguage®, ActivityBar®, and ProbabilityMap® are registered trademarks
of TradeStation Technologies, Inc. PaintBar and ShowMe are trademarks of TradeStation Technologies, Inc.
Microsoft is a registered trademark of Microsoft Corporation and MS-DOS and Windows are trademarks of
Microsoft Corporation.

Contents
CHAPTER: 1 - Introduction ..1
What is EasyLanguage? ... 2
What Can You Create? ... 2
EasyLanguage Resources and Support ... 2

CHAPTER: 2 - The Basic EasyLanguage Elements3
How EasyLanguage is Evaluated ... 4
About the Language ... 5
Referencing Price Data ... 7
Expressions and Operators ... 8
Referencing Previous Values ... 13
Manipulating Dates and Times ... 15
Using Variables .. 20
Using Inputs .. 25
EasyLanguage Control Structures .. 28
Writing Alerts ... 34
Understanding Arrays ... 40
Understanding User Functions ... 44
Output Methods .. 58
Drawing Text on Price Charts .. 69
Drawing Trendlines on Price Charts .. 81
Multimedia and EasyLanguage .. 99

CHAPTER: 3 - EasyLanguage for TradeStation 6103
Writing Strategies ... 104
The Trading Strategy Testing Engine ... 105
Order Placement ... 119
Understanding Built-in Stops ... 132
Writing Indicators and Studies ... 136

iv Contents
Writing ShowMe and PaintBar Studies .. 140
Writing ProbabilityMap Studies ... 145
Writing ActivityBar Studies ... 153

CHAPTER: 4 - EasyLanguage and Custom DLLs ...169
Defining a DLL Function ... 170
Using Functions from DLLs ... 173
Keeping Track of Analysis Techniques ... 174
More About the EasyLanguage DLL Extension Kit .. 177

APPENDIX A: - EasyLanguage Syntax Errors ..179
APPENDIX B: - EasyLanguage Colors, Widths & Codes ...209
APPENDIX C: - Reserved Words Quick Reference ..211
APPENDIX D: - EasyLanguage Tool Kit Library ...263

Index...277

C H A P T E R 1

Introduction

This book is a comprehensive reference for EasyLanguage, TradeStation Technologies’

industry-standard computer language. It explains in detail the capabilities of the language
and its structure, using examples throughout to illustrate the concepts and syntax
presented.

This book first covers the basic elements of EasyLanguage and then delves more deeply
into the EasyLanguage specifically for use with TradeStation.

This book covers EasyLanguage concepts in the context of the product; it does not
provide procedural information on using the EasyLanguage PowerEditor or
TradeStation 6. All procedural instructions are covered in the TradeStation Help.

The appendixes at the back of the book contain two useful references: a reserved word
quick reference and the EasyLanguage syntax errors. The reserved word quick reference
is a complete list of the EasyLanguage reserved words, listed alphabetically. The syntax
error list is a complete list of the verification syntax errors generated by the PowerEditor,
listed by error number. Both of these items also are available online in the TradeStation
Help, as you will find these items useful when troubleshooting EasyLanguage.

In This Chapter

What is EasyLanguage? 2

What Can You Create?............................. 2

EasyLanguage Resources and Support 2

2 What is EasyLanguage? CHAPTER 1
What is EasyLanguage?
EasyLanguage is a simple, but powerful, computer language that enables you to create
your own custom trading and technical analysis tools. By combining common trading
terminology with simple decision statements, EasyLanguage makes it easy for you to
write your own trading rules and actions in a clear and straightforward manner.

Simply put, TradeStation reads your EasyLanguage statements, evaluates them based on
the price data that has been collected, and performs the specified actions.

What Can You Create?
EasyLanguage enables you to create your own trading strategies, indicators, studies, and
functions. Or, if you choose, you can copy and modify any of the hundreds of built-in
trading strategies, analysis techniques, and functions that are included with TradeStation.

The types of trading and technical analysis tools you can create for TradeStation are:

Indicators (chart-based)

ShowMe Studies

PaintBar Studies

ActivityBar Studies

ProbabilityMap Studies

Strategies

Functions

TradeStation can store an unlimited number of analysis techniques.

EasyLanguage Resources and Support
To help ease the learning curve for EasyLanguage, there are several methods of support
available. From the Help menu in TradeStation, you can access the TradeStation Help, Tu-
torials, FAQs, and Knowledge Base. All of these support tools contain information to help
you create your own trading and technical analysis tools. You can also email TradeStation
Support for assistance with EasyLanguage at the address below:

EasyLanguage@TradeStation.com

C H A P T E R 2

The Basic EasyLanguage Elements
EasyLanguage is the industry standard language used to describe trading ideas, and it is the
most powerful, versatile, and easy to use customization tool used by traders world wide.
But how does it work? This chapter answers that question, and introduces you to the
syntax, grammar, control structures, and general concepts that are the foundation for
EasyLanguage.

This chapter discusses how EasyLanguage performs its calculations, and provides a solid
foundation for you to begin working with TradeStation.

In This Chapter

How EasyLanguage is Evaluated............. 4

About the Language 5

Referencing Price Data............................. 7

Expressions and Operators 8

Referencing Previous Values 13

Manipulating Dates and Times 15

Using Variables 20

Using Inputs ... 25

EasyLanguage Control Structures.......... 28

Writing Alerts... 34

Understanding Arrays 40

Understanding User Functions............... 44

Output Methods...................................... 58

Drawing Text on Price Charts................ 69

Drawing Trendlines on Price Charts 81

Multimedia and EasyLanguage.............. 99

4 How EasyLanguage is Evaluated CHAPTER 2
How EasyLanguage is Evaluated
Regardless of the type of trading or technical analysis tool you’re writing—an indicator,
trading strategy, search strategy, etc.—the first step is understanding how EasyLanguage
evaluates data.

EasyLanguage and Price Charts
A price chart typically consists of a number of bars built from price data associated with a
specified trading instrument. Each bar summarizes the prices for a trading interval—a time
period such as five minutes or one day—and includes values such as the open, high, low,
and closing prices for that period. Other bar data such as the date and time of the bar’s close,
the volume, and in the case of futures the open interest is also available for each bar.

One of the main uses of EasyLanguage is to evaluate price data from one bar and compare
it to data from other bars; therefore, it is important to understand how an EasyLanguage
trading strategy, analysis technique or function evaluates the price data on a price chart and
performs its analysis.

Let’s look at a simple one-line trading strategy:

If the Close > High of 1 Bar Ago Then Buy at Market;

This simple statement is instructing EasyLanguage to compare the closing price of one bar
with the high price of the previous bar, and to generate a buy order for the open of the next
bar when the close is greater than the high. This comparison is made on the closing price
of every bar in the chart, each time referencing the high price of the preceding bar.

Assume you have incorporated the above trading strategy into a trading strategy that you’ve
applied to a chart. Even though your trading strategy is applied to a chart filled with many
different bars, the information that is evaluated for each bar is always the same (i.e., close
price, volume, high price, etc.). Remember, a chart is a visual representation of a period of
trading history for a symbol, where individual bars represent trading intervals.

To evaluate your chart, EasyLanguage evaluates the price data from the very first bar in the
chart to the most recent bar on the chart. In terms of your trading strategy, analysis tech-
nique, or function, the bar being evaluated is considered the current bar (thus, at some
point, every bar on the chart is considered to be the current bar). The EasyLanguage state-
ments in your procedure are always evaluated relative to the current bar.

Now, on the first bar of the chart, there are no previous bars so the comparison in the
example above cannot be performed. Thus, the trading strategy would have to wait un-
til the second bar of the chart in order to perform any calculation. This is called ‘max-
imum number of bars the study will reference’ or MaxBarsBack. This concept is
discussed in detail under “Maximum Number of Bars a Study will Reference, or Max-
BarsBack” on page 14.

When your procedure is done evaluating the current bar, EasyLanguage steps forward to
the next bar in the chart, making it the bar on which the statements in your procedure are
evaluated, or the current bar.

The Basic EasyLanguage Elements About the Language 5
Typically, a trading strategy, analysis technique or function includes a number of instruc-
tions, each of which can result in an action; for example, an indicator will display a value,
and a trading strategy will generate a buy or sell order. Once all the EasyLanguage instruc-
tions are processed for the current bar, the price data from the next bar is read and the in-
structions are evaluated using the new prices. This continues across the chart from left to
right, until all of the bars from the chart are read and analyzed. Using the trading strategy
example, the result is that for a 500-bar chart, the instructions are evaluated a total of 499
times, once for each bar (except the first bar, when there is not enough data to perform the
calculation).

For example, look at the chart shown in Figure 2-1, consisting of bars A through H, to
which we applied an indicator named HiLoPlot. Each statement within the indicator is eval-
uated from the first line of EasyLanguage to the last, and for every bar of the chart, one at
a time, starting with the price data from bar A, then from bar B, etc. across all of the bars
in the chart.

Even though the EasyLanguage instructions might not be clear at this time, it’s
important that you understand that each instruction is evaluated, in order from the first
line to the last, for every bar of the chart, one at a time.

About the Language
There are certain basic elements in EasyLanguage that apply regardless of what type of
trading or technical analysis tool you are writing; you’ll use these elements whenever you
work with EasyLanguage. Once we cover these basics, we’ll move on to the specifics of
writing EasyLanguage trading strategies, indicators, studies, and functions.

Figure 2-1. Evaluating bars from the first line to the last, and left to right

6 About the Language CHAPTER 2
Statements
An EasyLanguage statement represents a complete instruction. Statements can contain re-
served words, operators, and punctuation marks, and always end in a semicolon. For exam-
ple:

Buy 100 Shares on the Next Bar at 100 Stop ;

Reserved Words
The basic vocabulary of EasyLanguage consists of a set of pre-defined words, which
we call reserved words. Reserved words each have a specific meaning or purpose; for
example, to display values or create objects in a window, perform a trading action, or
evaluate and manipulate data.

As we cover each topic, we will introduce and describe the reserved words required to
use the particular EasyLanguage feature.

Operators
Operators are symbols that represent an operation; for example, a plus sign is an
operator representing the addition of two values. There are many different kinds of
operators available for your use in EasyLanguage: mathematical, relational, string,
and logical. These are described in detail in the section titled, “Expressions and
Operators” on page 8.

Punctuation Marks
There are a number of punctuation marks that you will use often as you write EasyLan-
guage to establish statements, define parameters, delimit words, and establish order of pre-
cedence.

For example, EasyLanguage uses the semicolon (;) to mark the end of each statement.
Punctuation marks are considered reserved words, because they are a part of the structure
of the language. The following punctuation marks are recognized in EasyLanguage:

Symbol Name Description
; Semicolon Ends a statement.
() Parentheses Groups values and forces them to be calculated first.

Also, surrounds the set of parameters or inputs
required by a reserved word.

, Comma Separates each parameter or input in a set required by
a reserved word. Also, separates a list of declared
inputs or variables.

: Colon Used in declaration statements to begin the list of
inputs or variables. Also, used with Print statements
to format numeric expressions.

The Basic EasyLanguage Elements Referencing Price Data 7
You will find examples of the usage of these punctuation marks throughout this
reference guide.

Referencing Price Data
The main objective of any trading or technical analysis tool is to evaluate price data. There-
fore, EasyLanguage provides a set of reserved words to refer to the price data available for
each bar.

These reserved words match the common verbiage used in everyday trading (e.g., Open,
High, Low, Close, Volume). The following table lists the reserved words used to refer to
the prices and other bar data, along with the abbreviations you can use in place of the words:

Symbol Name Description
" " Quotation

Marks
Defines a text string.

[] Square (Hard)
Brackets

Used as a modifier, to reference a value from a
previous bar. Also, specifies elements in an array
variable.

{ } Curly Brackets Surrounds text that is to be ignored by EasyLanguage.
Enables you to include comments.

Reserved Word Abbreviation Description

Close C Last traded price of a bar.

Date D Date of the close of a bar.

Time T Time of the close of a bar.

Open O First traded price of a bar.

High H Highest traded price of a bar.

Low L Lowest traded price of a bar.

Volume V Number of shares or contracts traded in a bar.

OpenInt OI Number of outstanding contracts at the close of a
bar (available with futures only).

Ticks -- Total number of trades in a bar.

UpTicks -- Number of trades in which price was higher than
the previous trade, or unchanged tick after an uptick.

DownTicks -- Number of trades in which price was lower than the
previous trade, or unchanged tick after a downtick.

8 Expressions and Operators CHAPTER 2
You can use any or all of these reserved words in your trading strategies, analysis tech-
niques, and functions to refer to information regarding the current bar being evaluated. Re-
member that trading strategies, analysis techniques and functions are evaluated for every
bar, from oldest to most current, and results are obtained for every bar.

Also, since trading decisions are rarely made on just one bar’s worth of price information,
EasyLanguage makes it easy to obtain price data from any bar older than the current bar by
adding a modifier after the appropriate reserved word. For a detailed description of the
modifier to add, refer to the section titled, “Referencing Previous Values” on page 13.

Skip Words
There is a subset of reserved words called skip words. Skip words are optional words
that can be included in any statement with the intent of making the statement easier to
read. Skip words have no meaning and are in fact ‘skipped’ by EasyLanguage when
evaluating the trading strategy, analysis technique, or function. Following is a list of the
EasyLanguage skip words.

For examples using these skip words, please refer to Appendix C, “Reserved Words
Quick Reference” on page 211.

Expressions and Operators
An expression is any combination of reserved words and operators that represent a value.
The value can be of three different types:

numeric
true/false (also called logical or boolean)
text string

As you work with EasyLanguage, you will use all three types of expressions extensively to
create your procedures.

Numeric expressions can be literal; in other words, a number. Or, they can be a reserved
word that represents a numeric value; for example, Close. The following are all examples
of numeric expressions.

15

Volume

(High + Low) / 2

True/false expressions can be either the value True or False, or an expression that evaluates
to True or False. True/false expressions invariably involve a comparison. The following is
a true/false expression; it evaluates to a value of True or False:

Close > Open

a an at based by does from

is of on place than the was

The Basic EasyLanguage Elements Expressions and Operators 9
A text string expression is any characters within quotation marks. The following is an ex-
ample of a text string expression:

“This is a text string expression”

Operators
EasyLanguage provides a variety of operators that enable you to manipulate reserved words
and values to create more complex numeric, true/false, and text string expressions. The four
different types of operators available in EasyLanguage are string, mathematical, relational,
and logical.

String Operator
There is only one operator available to manipulate text string expressions, and its purpose
is to concatenate two text string expressions. The symbol used is the plus sign (+), and it
is used as follows:

“This is expression 1 ” + “and this is expression 2”

The result will be one text string expression with the value of “This is expression 1 and this
is expression 2”.

Mathematical Operators
These operators are used to perform mathematical operations. The five mathematical
operators are:

These operators are always evaluated in a specific order. Division and multiplication are
evaluated first, and addition and subtraction are evaluated second. If there is more than one
division and/or multiplication (or addition and/or subtraction) these are resolved from left
to right.

For example, the numeric expression:

High + 2 * Range / 2

...will multiply the range of the bar by two first, then divide that value by two. It will then
add the result to the high. In an effort to find the midpoint of a bar, you might try to write
the following numeric expression:

High + Low / 2

Math Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
() Parentheses

10 Expressions and Operators CHAPTER 2
...but this will divide the low by two first, and then add the result to the high, giving a com-
pletely different result than what you intended.

In order to perform the calculation as expected and calculate the midpoint of the bar, you
need to use parentheses to control the order in which the calculations are performed. Any-
thing inside parentheses is evaluated first, before all the operators and expressions outside
of the parentheses. Therefore, to obtain the midpoint of the bar, you can write:

(High + Low) / 2

This will result in the high and the low being added and then divided by two.

Relational Operators
Relational operators enable the following standard comparisons: greater than, less than,
equal to, greater than or equal to, less than or equal to, and not equal to. EasyLanguage
also provides two trading-specific operators, crosses over and crosses under, which enable
you to identify the bar on which two numeric expressions cross.

The relational operators available in EasyLanguage are:

Advanced Tip: “Division by Zero”
Whenever EasyLanguage finds a division sign, it performs an internal check to
ensure that the trading strategy, analysis technique, or function is not attempting a
division by zero.
In order to improve your trading strategies, analysis techniques, and functions for
speed, whenever dividing by a fixed number (a literal), use multiplication instead of
division. This allows EasyLanguage to skip the division by zero check.
For example, when finding the midpoint of the bar, you can write:

(High + Low) / 2

Given that we know dividing by two forces EasyLanguage to check for division by
zero, we can use the following expression to improve the speed of the same
calculation:

(High + Low) * 0.5

Relational
Operator

Meaning

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
= Equal to
<> Not equal to

The Basic EasyLanguage Elements Expressions and Operators 11
Using these relational operators, you can compare two numeric or text string expressions.
For example, the following expression finds a bar that closed higher than the high of one
bar ago:

Close > High of 1 bar ago

When comparing text string expressions, each character is substituted with its equivalent
ASCII value and the first character of both expressions is compared, then the second char-
acter of each expression is compared and so on, until all characters of both expressions have
been evaluated.

Consider the following expression:

“abcd” < “zyxw”

The first character of the first text string expression is compared to the first character
of the second expression. The letter “a” has a smaller ASCII value than “z” so this
expression returns a value of True.

Logical Operators
Logical operators are used to combine two true/false expressions. There are two logical op-
erators:

AND
OR

AND is used when both true/false expressions must be true; OR is used when either one or
both of the two expressions must be true. Following is a table that shows the possible re-
sulting values when using AND and OR:

Relational
Operator

Meaning

crosses over Greater than on current bar but less than or equal to on the
previous bar; you can also use crosses above.

crosses under Less than on current bar but greater than or equal to on the
previous bar; you can also use crosses below.

Expression 1 Expression 2 Expression 1 AND Expression 2
True True True
True False False
False True False
False False False

12 Expressions and Operators CHAPTER 2
As seen in the tables, the use of OR increases the likelihood of the overall expression being
true as only one of the two expressions needs be true in order for the overall expression to
be true.

More complex true/false expressions can be written using logical operators. For example,
in order to find a key reversal bar, you can use the following expression:

Low < Low of 1 bar ago AND Close > High of 1 bar ago

Given that we are using AND, this expression is true only when both conditional expres-
sions are true, these are: the current bar’s low is lower than the low of the previous bar,
AND the close of the current bar is greater than the high of one bar ago.

As another example, you can use the following expressions to look for stocks that have ei-
ther a price equal to or greater than $50 a share or a volume greater than two million shares:

Close >= 50 OR Volume > 2000000

Given that we used OR, the above expression will be true when either the closing price is
greater than 50 OR the volume is greater than two million shares. It will only be false if the
closing price is under 50 and the volume is under two million shares.

When you use multiple ORs and ANDs in an expression, EasyLanguage will evaluate them
in the order they appear, from left to right. If necessary, use parentheses to group expres-
sions and alter the order in which EasyLanguage evaluates the expressions.

For example, assume you write an indicator and want to find either a key reversal with vol-
ume greater than the previous bar’s volume, or an outside bar. You can accomplish this by
writing one expression using ANDs, ORs, and parentheses.

The portion highlighted in gray finds the key reversal with volume greater than the previous
bar’s, and the boxed portion finds the outside bar. Notice the placement of parentheses:

(Low < Low[1] AND Close > High[1] AND Volume > Volume[1])

OR (High > High[1] AND Low < Low[1])

Notice that instead of writing out “of 1 bar ago”, we used the shorthand [1]. See
“Referencing Previous Values” on page 13 for more information.

Expression 1 Expression 2 Expression 1 OR Expression 2
True True True
True False True
False True True
False False False

The Basic EasyLanguage Elements Referencing Previous Values 13
Referencing Previous Values
You can reference the value of an expression for any previous bar by adding either of
the two qualifiers listed below after the expression:

of N bars ago

[N]

N is the number of bars ago to reference. For example, consider the following EasyLan-
guage expression:

Low of 1 bar ago

This expression is referencing the low price of the previous bar. The reference is relative to
the current bar (bar currently being evaluated). For example, if your trading strategy, anal-
ysis technique, or function is being evaluated for the 12th bar of a chart, the following ex-
pression refers to the traded volume of the 9th bar, or 3 bars back from the current bar:

Volume of 3 bars ago

The alternate method for referring to data from a previous bar is to enclose the number N
between square braces after a reserved word, input, or variable, where N is the number of
bars ago. For example, the following expression is referencing the opening price from 2
bars ago:

Open[2]

Advanced Tip: “Writing Conditional Expressions”
EasyLanguage is optimized for speed, and one optimization relates to evaluating
true/false expressions that include logical operators. When an expression is being
evaluated it may be determined that if the first part of the expression is false (or true),
the remainder of the expression is not evaluated. For example:

5 < 4 AND Close > Open

Because 5 < 4 is false, and we are using the AND operator, EasyLanguage will not
evaluate the second half of the expression because regardless of the result of this
second part, the entire expression will evaluate to False.
Similarly, in the expression:

5 > 4 OR Close > Open

The second half of the expression will not be evaluated because 5 > 4 is always true
and we are using the OR operator. Therefore, regardless of the result of the second
half of the operation, the expression will evaluate to True.
Therefore, to write your trading strategies, analysis techniques, and functions as
efficiently as possible, place the most restricting criterion of your expression first.

14 Referencing Previous Values CHAPTER 2
Keep in mind that when talking about trading strategies, analysis techniques, or functions,
we are always referring to bars; all trading strategies, analysis techniques, and functions are
based on bars and not on days, minutes, or ticks. This allows the trading strategy, analysis
technique, or function to analyze a daily, minute, or even tick chart without any modifica-
tions.

For example, a 10-bar average indicator will calculate a 10-day average if applied to a daily
chart, or a 10-minute average if applied to a 1-minute chart, or a 10-tick average if applied
to a 1-tick chart.

Maximum Number of Bars a Study will Reference, or MaxBarsBack
All trading strategies, analysis techniques, and functions that refer to past data will need to
wait a certain number of bars before they can start performing calculations. This waiting
period can be adjusted for any analysis technique, and it is called Maximum number of bars
a study will reference, or MaxBarsBack.

This concept is best explained through an example. Let’s use the Momentum Indicator,
which plots the difference between any price of the current bar and the same price N bars
ago. Using 10 as the number of bars ago, if we scroll all the way to the beginning of the
chart, we will see that we cannot calculate this indicator until we have 10 bars of data on
the chart. The indicator will start showing results on the 10th bar. Again, this is because it
needs to refer to the price of the previous 10 bars, as shown in Figure 2-2.

Figure 2-2. Momentum indicator waiting 10 bars before returning a value

The Basic EasyLanguage Elements Manipulating Dates and Times 15
Refer to section in this chapter titled, “How EasyLanguage is Evaluated” on page 4 for in-
formation on how EasyLanguage performs its calculations.

Manipulating Dates and Times
You’ll be using dates and times often when writing your trading strategies, analysis
techniques, and functions. This section covers how to work with dates and times.

Working with Dates
Dates in EasyLanguage are represented as a numeric expression in the form YYYMMDD
where YYY are years since 1900, MM is a 2-digit month, and DD corresponds to the day
of the month. For example, the EasyLanguage date corresponding to December 17, 1999 is
991217, whereas January 13, 2000 is written as 1000113.

One of the advantages of representing dates as numeric expressions is that it allows the
comparison of dates. For example, 1000113 is greater (i.e., it is a later date) than 991217,
and the following comparison evaluates to True: 1000113 > 991217.

A second way of representing dates in EasyLanguage is Julian Dates. The Julian Date sys-
tem assigns a date a number n, and the next calendar day has the Julian date n+1 (all cal-
endar days, not just trading days). The Julian Date system begins on January 1, 1900, which
is assigned the number 2. January 2, 1900 becomes the number 3, December 31, 1999 is
36,525, and January 1, 2000 is 36,526, etc.

Advanced Tips: “Understanding the Auto-Detect Loop”

When you apply an analysis technique to a price chart and use the Auto-Detect
MaxBarsBack setting, the application looks for the largest data offset used by the
trading strategy or analysis technique, and uses that number for the MaxBarsBack
setting. However, if the analysis technique uses a variable offset (e.g.,
Close[Value1]), then it is possible that the value initially chosen by the application
will not be sufficient to apply the trading strategy or analysis technique to all the
data in the chart.

For example, an indicator is applied to a chart, and the application initially
determines that the maximum offset is 5. However, as the application evaluates the
indicator on the chart, it determines that the analysis technique actually requires 25
bars to perform its calculation, so the application removes the analysis technique
from the chart, and applies it a second time with 25 as the MaxBarsBack setting. This
process is repeated until the indicator is evaluated for the entire chart without
having to be removed.

This can cause Print statements and other debugging tools, as well as DLL calls to
be executed repeatedly for the first few bars in the chart when the trading strategy
or analysis technique is first applied. If this behavior is not desired, you will need to
change the MaxBarsBack setting to User-defined.

More information on how the Auto-Detect and User-defined formatting settings work
is available in the TradeStation Help.

16 Manipulating Dates and Times CHAPTER 2
This allows us to perform mathematical calculations with dates—such as addition and sub-
traction—without having to worry about ‘rolling over’ months and years. For example, if
we have the EasyLanguage date 991013 (13 of October of 1999) and we want to find the
date of 20 days ago, we could (incorrectly) try to subtract 20 from the date:

991013 - 20

However, we would end up with 990993, which is not a valid EasyLanguage date. Instead,
we can subtract 20 from the Julian equivalent of the date:

36,446 - 20

This results in 36,426, which is correct because it is the Julian Date that corresponds to Sep-
tember 23, 1999.

Using the reserved words Date or ELDate whenever referring to a date will ensure compat-
ibility regardless of any future changes in date format. The reserved words that will allow
you to reference and manipulate dates are listed next.

This reserved word returns a numeric expression representing the EasyLanguage date of the
closing price of the bar being analyzed. The date is an EasyLanguage date, so it is a numeric
expression of the form YYYMMDD, where YYY is years since 1900, MM is the month,
and DD is the day of the month.
Syntax:
Date

Parameters:
None.

Example:
See the example for the reserved word ELDate.

This reserved word returns a numeric expression representing the EasyLanguage date
(YYYMMDD) equivalent to the standard date specified (YYYY, MM, DD).
Syntax:
ELDate(YYYY, MM, DD)

Parameters:
YYYY is the 4-digit numeric expression representing the year, MM is the 2-digit
expression representing the month, and DD is the 2-digit numeric expression
representing the day of the month.
Notes:
We highly recommend you use the reserved words Date or ELDate whenever referring to
a date. This will ensure compatibility regardless of any future changes in date format.

Date

ELDate(YYYY, MM, DD)

The Basic EasyLanguage Elements Manipulating Dates and Times 17
Example:
To verify that the date of the current bar is December 17, 1999, you can use the following
IF-THEN statement:

If Date = ELDate(1999, 12, 17) Then

 { EasyLanguage instruction } ;

This reserved word returns a numeric expression representing the Julian Date equivalent to
the specified EasyLanguage date.
Syntax:
DateToJulian(eDate)

Parameters:
eDate is the EasyLanguage date (YYYMMDD format) to be converted into a Julian Date.

Example:
You can use the following statement to obtain the Julian Date equivalent to the
EasyLanguage date of the current bar and assign it to a variable (in this case Value1):

Value1 = DateToJulian(Date);

This reserved word returns a numeric expression representing the EasyLanguage date
equivalent to the specified Julian Date.

Syntax:
JulianToDate(jDate)

Parameters:
jDate is a numeric expression representing the Julian Date to convert into an EasyLanguage
date (YYYMMDD format).
Example:
The following statement obtains the Julian Date of the day 20 calendar days ahead of the
date of the current bar, and converts the result into an EasyLanguage date:

Value1 = JulianToDate(DateToJulain(Date) + 20);

The expression inside parentheses (the reserved word DateToJulian) is evaluated first.
It converts the date of the current bar to a Julian Date. Then, the number 20 is added to
the resulting Julian Date. This Julian Date is then the parameter for the reserved word
JulianToDate, which converts the Julian Date to an EasyLanguage date, in the format
YYYMMDD. This EasyLanguage date is stored in the variable Value1.

DateToJulian(eDate)

JulianToDate(jDate)

18 Manipulating Dates and Times CHAPTER 2
This reserved word returns a numeric value representing the EasyLanguage date (YYYM-
MDD format) corresponding to the date and time of your computer (or datafeed, if you are
connected to a datafeed).

Syntax:
CurrentDate

Parameters:
None.
Example:
To have a trading strategy, analysis technique, or function perform its calculations only
before January 1, 2000 (or any other date for that matter), you can write:

If CurrentDate < ELDate(2000, 01, 01) Then Begin

 { EasyLanguage instruction(s) }

End;

Working with Times
In EasyLanguage, times are expressed as numeric expressions in the form HHMM, where
HH is the hour and MM is the minutes. The hours are managed in what is commonly called
24-hour or military format, so 1:30pm is represented as 1330 and 10:05am is represented
as 1005. EasyLanguage does not allow for references to seconds.

In addition, when you work with time, to facilitate mathematical operations such as addi-
tion and subtraction, you can refer to the time as minutes past from midnight. For instance,
1:00am is 60 (60 minutes after midnight), and 10:30am is 630 (630 minutes after midnight).

For example, if the current time is 10:30am (or 1030), and you want to add 60 minutes to
the current time, you may think that you simply add 60 to 1030:

1030 + 60

However, doing so results in a total of 1090, which is not a valid time. Therefore, to add 60
minutes to a time, use minutes after midnight. You would write:

 630 + 60

Doing so results in 690. When you convert this number back into time in 24-hour format,
the result is 1130, which is the desired value. Reserved words are provided for you to con-
vert times back and forth automatically.

The reserved words used to reference and manipulate times are listed next.

CurrentDate

The Basic EasyLanguage Elements Manipulating Dates and Times 19
This reserved word returns a numeric expression representing the EasyLanguage time
(HHMM format) of the closing price of the current bar.

Syntax:
Time

Parameters:
None.
Example:
For example, you can write your trading strategy, analysis technique, or function such
that it only evaluates the EasyLanguage instructions when the trade time is less than
11:00am:

If Time < 1100 Then

{ EasyLanguage instruction } ;

This reserved word returns a numeric value representing the number of minutes elapsed
since midnight for the EasyLanguage time (HHMM format) specified.
Syntax:
TimeToMinutes(eTime)

Parameters:
eTime is a numeric expression representing the EasyLanguage time to be converted into
minutes past midnight.

Example:
The following statement converts the current bar’s time into minutes past midnight, and as-
signs the numeric value to a variable (in this case, Value1):

Value1 = TimeToMinutes(Time);

This reserved word returns a numeric expression representing the EasyLanguage time
(HHMM format) equivalent to a specific number of minutes from midnight.

Syntax:
MinutesToTime(mTime)

Parameters:
mTime is a numeric expression representing the minutes past midnight to be converted into
the equivalent EasyLanguage time.

Time

TimeToMinutes(eTime)

MinutesToTime(mTime)

20 Using Variables CHAPTER 2
Example:
The following statement converts the current time into minutes past midnight, adds 20 to
it, and then converts the resulting number back into an EasyLanguage time:

Value1 = MinutesToTime(TimeToMinutes(Time) + 20);

The expression within parentheses is evaluated first (the reserved word
TimeToMinutes). It converts the time of the current bar to minutes past midnight. Then,
20 is added to the minutes past midnight, and the resulting number is used as the
parameter for the reserved word MinutesToTime, which converts the number back into
an EasyLanguage time (HHMM format).

This reserved word returns a numeric value representing the EasyLanguage time (HHMM
format) corresponding to the time of your computer (or TradeStation Network, if you are
working online).

Syntax:
CurrentTime

Parameters:
None.
Example:
To have a trading strategy, analysis technique, or function perform its calculations only
if it is before 2:00pm, you can write:

If CurrentTime < 1400 Then Begin

 { EasyLanguage instruction(s) }

End;

Using Variables
Variables are placeholders that hold a value; once you assign a value to the variable, you
can reference the value throughout the trading strategy, analysis technique, or function by
using the name of the variable. You can also recalculate the value of the variable within the
procedure.
The definition of variable by Webster is a symbol that may have an infinite number of val-
ues; that which is subject to change. Like the definition states, the value stored by the vari-
ables can change any number of times throughout the procedure, even from bar to bar.
The main use of a variable is to store the result of a calculation or comparison in order to
refer to the result of this operation later without having to repeat the formula or expression.
For example, in variable X you can store the value of the high price of the bar plus 33% of
the average true range. Once this value is calculated and assigned to the variable, there is
no need to type the formula again; you can use X instead to refer to this value.
Variables help with the speed and efficiency of the procedure. This is because the applica-
tion does not have to reference repeatedly the values that compose the statement (e.g., pric-

CurrentTime

The Basic EasyLanguage Elements Using Variables 21
es and other values), or perform the math or comparisons that are required by the
expression. Therefore, using variables in place of frequently-used expressions speeds up
the procedure and uses less memory.
Another very important fact about variables is that the value of a variable at the end of a bar
is used as the initial value of the variable for the next bar. In other words, the values of all
variables are carried over from bar to bar, thus allowing an easier manipulation of informa-
tion. For instance, you can use a variable to keep a counter of the number of bars that have
passed since a certain market condition, or the number of bars that you’ve been in a certain
market position.
For example, the following instructions keep a counter of the number of bars since the last
key reversal:

Variable: Counter(-1);

If Counter <> -1 Then
 Counter = Counter + 1 ;

If Low < Low[1] AND Close > High[1] Then
 Counter = 0 ;

The variable Counter starts with a value of -1 (which is assigned in the Variable Declara-
tion statement), and is incremented by one on every bar once its value changes from
-1.

This indicator changes the Counter variable from -1 to 0 the first time a key reversal is
found, and subsequently resets it to 0 each time a new key reversal is found. Note how the
instructions Counter = Counter + 1 assigns to the variable Counter its current value and
adds one. This would not be possible unless variables carried forward their values from bar
to bar.

Also, using variables helps avoid typing errors and makes your procedure more legible. For
example, consider the following statement:

If Close > High[1] + Average(Range,10) * 0.5 Then
 Buy Next Bar at High[1] + Average(Range,10) * 0.5 Stop;

The expression highlighted in the gray boxes can be assigned to a variable. By using a vari-
able (in this example the variable is Value1), we can simplify the statement to the follow-
ing:

Value1 = High[1] + Average(Range,10) * 0.5 ;

If Close > Value1 Then
 Buy Next Bar at Value1 Stop;

This second example is much easier to read because of the use of a variable. If you are going
to use an expression throughout a procedure, you should assign it to a variable.

Note: If you use an expression very frequently and in more than one trading strategy
or analysis technique, you may want to create a function. Variables can only be used

22 Using Variables CHAPTER 2
in the procedure where they are declared and are not shared between trading
strategies and analysis techniques, whereas functions can be referenced by other
trading strategies and analysis techniques, and even other functions. The section later
in this chapter, titled, “Understanding User Functions” on page 44 covers functions
in detail.

When working with variables, you declare them, assign values to them, and reference their
values. How to do each is discussed next.

Declaring Variables
Before you can use a name as a variable, you must ‘tell’ EasyLanguage that the name
is to be used as a variable; this is known as declaring the variable(s). To declare a
variable, you use a Variable Declaration statement. When you declare a variable, you
also specify its type and initial value.

Syntax:
Variable: Name(Value) ;

Name is the name of the variable. The name must start with a letter, and can be a maximum
of 20 characters in length. The name can contain letters, numbers, dashes, or periods. Value
is any numeric, true/false, or text string value; it is the initial value for the variable.

You can declare one or more variables using the same statement by separating the variables
with commas. For example, the following statement declares three variables, each of a dif-
ferent type:

Variables: Number(0), Condition(False), TextStr(“Text”);

There is no limit to the number of variables that you can declare with one statement, al-
though if you prefer, you can use multiple variable declaration statements. There is no limit
to the number of Variable Declaration statements you can use, either.

Also, the reserved words Var, Vars, and Variables are synonyms to Variable and can be
used interchangeably. For example, you could rewrite the statement above as:

Vars: Number(0), Condition(False) ;

Var: TextStr(“Text”);

The values in parentheses serves two purposes. First, it indicates the type of variable it is:
numeric, true/false, or text string. If you use a numeric expression, the variable is a numeric
variable; if you use a true/false expression, then it is a true/false variable; and likewise, if
you use a text string expression, the variable is a text string variable.

Second, the value in parentheses assigns the initial value to the variable. As explained ear-
lier in this reference guide, all the instructions in EasyLanguage are read from top to bot-
tom, and they are interpreted for every bar on the chart from left to right. On the first bar,
the variable takes the value in parentheses as its initial value.

Note: For your convenience, EasyLanguage provides a number of pre-declared
numeric and true/false variables. You can use these variables in your trading

The Basic EasyLanguage Elements Using Variables 23
strategies, analysis techniques, and functions without declaring them or setting their
initial value. The numeric variables available for you to use are Value0 through
Value99, and their initial value is zero (0). You’ll notice that in most of our examples,
we use Value1. The true/false variables available for you to use are Condition0
through Condition99, and their initial value is False. There are no pre-declared text
string variables. The only advantage to using pre-declared variables is that you don’t
need to declare them. The disadvantages are that the name(s) will be less intuitive and
you cannot set their initial values yourself.

Assigning Values to Variables
Once you have declared your variable(s) (or if you are using pre-declared variable(s)), you
can assign values to them throughout the trading strategy, analysis technique, or function.
Syntax:
Name = Expression ;

Name is the name of the variable and Expression is either a numeric, true/false, or text
string expression. The expression type must match the variable type. If the statement is as-
signing a value to a numeric variable, the expression must be a numeric expression.

For example, the following statement assigns the average true range of the last 10 bars to
the variable Value1:

Value1 = Average(TrueRange, 10);

The following statements declare a true/false variable called KeyReversal, and then assign
the result of a comparison to the variable:

Variable: KeyReversal(False);

KeyReversal = Low < Low[1] AND Close > High[1];

Referencing the Value of a Variable
Once you have declared a variable, and a value has been assigned to it, you can reference
its value by using the name of the variable in place of the expression. For example, the fol-
lowing statements calculate an entry price, assign it to a numeric variable called EntryPrc,
and then reference the value of the variable in the buy order:

Variable: EntryPrc(0);

EntryPrc = Highest(High,10);

If MarketPosition <> 1 Then
 Buy Next Bar at EntryPrc Stop;

In the following example, the statements calculate the highest high of the last 10 bars, com-
pare it to the current high, and assign the result to a true/false variable called Condition1.
We then use an IF-THEN statement to determine if Condition1 is true, and if it is, then an
alert is triggered:

Condition1 = High > Highest(High, 10)[1];

24 Using Variables CHAPTER 2
If Condition1 Then
 Alert(“New 10-bar high”);

Notice that we do not have to use the comparison Condition1 = True; it is assumed. If, how-
ever, you want to find when the expression is false, then you must state the comparison, as
follows:

Condition1 = High < Highest(High, 10)[1] AND Low >
Lowest(Low,10)[1];

If Condition1 = False Then
 Alert(“New high or low”);

Normally, you would write the expression such that you want it to evaluate to true; howev-
er, it is up to you which way you want to write the expressions and statements.

It is also possible to refer to the value of a variable on a previous bar; to do so, include the
square brackets and number after the name of the variable. For example, the following
statements refer to the value of a variable called EntryPrc five bars ago:

Variable: EntryPrc(0);

EntryPrc = Highest(High, 10);

If EntryPrc > EntryPrc[5] Then
 Buy Next Bar at EntryPrc Stop;

Advanced Tip: “Working with Series Variables”
EasyLanguage automatically determines if a variable is referenced historically at any
point in the trading strategy, analysis technique, or function, and will store the historical
values of the variable only if required. Variable values are not stored and cannot be ref-
erenced within the initial MAXBARSBACK buffer.

MaxBarsBack is the minimum number of referenced historical bars required, at the be-
ginning of a chart, to begin calculating a trading strategies, analysis techniques, and
functions.

For example, consider the following indicator:
Value1 = Close * 1.05;

Value2 = Close - Close[10];

Value3 = Value1[5] + Value2;

Plot1(Value3);

A historical value of Value1 is referenced in the third line (the value of five bars ago);
also, the MaxBarsBack setting for the indicator is 10 (since the close of 10 bars ago
is referenced and that is the most history required). Therefore, the indicator will store
the values for Value1 for the last 10 bars. The variables Value2 and Value3 do not
require that history be saved (they are simple), thus historical values of these
variables are not stored.

The Basic EasyLanguage Elements Using Inputs 25
Using Inputs
Inputs are placeholders that hold a value; you can define the value of the input once at the
beginning of the procedure and then reference the value throughout the trading strategy or
analysis technique by using the name of the input.

The value of an input cannot be changed within the EasyLanguage procedure; its value re-
mains constant throughout the procedure. The advantage of using an input is that you can
redefine the value of the input when you use the trading strategy or analysis technique.

For example, the Indicator Mov Avg 1 Line is written with an input called Length, which
is the number of bars to include in the average. This input is assigned the default value of
9, but you can change it to any number when you apply the indicator to a chart, thereby
having the analysis technique calculate the moving average using a different number of
bars.

Inputs allow for maximum flexibility and user-control of the trading strategy or analysis
technique without having to go to the EasyLanguage PowerEditor to modify the instruc-
tions themselves. Also, you can use the same EasyLanguage procedure more than once in
a Chart Analysis window (or in different Chart Analysis windows), using different input
values in each.

For example, you can apply the Mov Avg 1 Line Indicator to a Microsoft chart to calculate
a 10-bar average, and you can apply the same indicator to an IBM chart to calculate an 18-
bar average. Inputs allow the same indicator to perform these different calculations; you
don’t have to create a new indicator or even modify it in the EasyLanguage PowerEditor.

Another important advantage is that when you use inputs in your trading strategies, you can
then use TradeStation’s optimization feature to fine tune your trading strategy(ies). For in-
formation on optimizing your trading strategies, search the TradeStation Help for Under-
standing Optimization.

Input Types
Inputs can be one of three types: numeric, true/false, or text string. Numeric inputs repre-
sent numeric values, true/false inputs represent expressions that evaluate to True or False,
and text string expressions hold text strings.

Inputs can be literal expressions such as a specific number or a text string, or they can be
expressions whose values will change from bar to bar; for example, an input can be set to

Variables can be either series or simple. When they are series, history is stored for
them; when they are simple, history is not stored for them. This becomes important
when accessing the values of variables from third-party languages through DLLs,
because there may or may not be historical data stored for the variable, or not as
much as desired by the third-party developer. In this scenario, you can force a
variable to be a series variable by referencing a previous value of the variable in the
trading strategy, analysis technique, or function (i.e., by using a ‘dummy’ statement).
Or, you may want to consider working with functions; you can force a function to be
a series function. See the section later in this chapter titled, “Understanding User
Functions” on page 44.

26 Using Inputs CHAPTER 2
the close of the bar, in which case, the value will change with each bar. Or, it can be set to
the range of the bar, using the function Range. The value of an input cannot change within
a bar.

To use inputs, you first have to declare them; once you declare them, you can reference
them in your trading strategy or analysis technique. There is no Assignment statement for
inputs (since their value cannot be changed within the procedure).

Declaring Inputs
Before using any name as an input, it is necessary to tell EasyLanguage that this name will
be used as an input, or to declare the inputs you will be using. To do so, you use an Input
Declaration statement.

Syntax:
Input: Name(Value);

Name is the name of the input. The name has to start with a letter, and it can be a maximum
of 42 characters in length. The name can contain letters, numbers, dashes, or periods. Value
is any numeric, true/false, or text string value that will be used as the default value for the
input.

You can declare more than one input using the same statement by separating the inputs with
commas. For example, the following Input Declaration statement declares three different
inputs:

Inputs: MyNumber(0), MyCondition(False), MyText(“Text”);

There is no limit to the number of inputs that you can declare with one statement; however,
you can also use as many Input Declaration statements as you want in your procedure.

Note: The reserved word Inputs is a synonym to Input; they can be used
interchangeably.

The value provided in parentheses serves two purposes: first, it defines the type of the input.
If a numeric expression is used, it is a numeric input; if a true/false expression is used, it is
a true/false input; and, if a text string expression is used, the input is a text string input.

Second, it assigns the default value to the input. The value specified for each input can be
altered when you apply or format the trading strategy or analysis technique, but this is the
value for the input each time it is applied.

Referencing the Value of an Input
Once you have declared an input, you can reference its value simply by using the name of
the input in place of a numeric, true/false, or text string expression. For example, the fol-
lowing statements calculate an entry price using an input as the multiplying factor:

Input: Mult(1.3);

Variable: EntryPrc(0);

EntryPrc = Highest(High,10) * Mult ;

The Basic EasyLanguage Elements Using Inputs 27
If MarketPosition <> 1 Then
 Buy Next Bar at EntryPrc Stop;

First, we declare the input. Then, we declare a variable, to which we assign the highest high
price of the last 10 bars, multiplied by the input (whose value is set to 1.3). Once we have
calculated the entry price (EntryPrc), we place an order. If we are not currently in a long
position, we place a stop order to buy on the next bar at the entry price we’ve calculated or
higher. Notice that we reference the value of the input simply by using the input in place of
a value.

In EasyLanguage, you use true/false expressions in IF-THEN statements and in While
loops (these are described in the section titled “EasyLanguage Control Structures” on
page 28). These statements perform their actions when the true/false expression evaluates
to True. The following instructions show an example of referencing the value of a true/false
input:

Input: DrawLine(False);

Plot1(Momentum(Close, 10), “Momentum”);

If DrawLine Then
 Plot2(0, “Zero”);

This indicator plots a momentum line using the closing price of the last 10 bars. In addition,
it allows for the plotting of a zero line, which by default, will not be drawn (the input Draw-
Line is set to False by default). If, however, you change the DrawLine input to True as you
apply the indicator or when you format it, then the zero line will be drawn on the chart.

It is also possible to refer to the value of an input on a previous bar; to do so, include the
square brackets and number after the name of the input. For example, the following state-
ments calculate and plot a momentum value:

Inputs: Price(Close), Length(5) ;

Value1 = Price - Price[Length]

Plot1(Value1, "Momentum");

We use an input to refer to the price we want to use to calculate the momentum as well
as the number of bars to use. In this case, the value of the input 5 bars ago may be
different because the input is a price, which varies from bar to bar. If the value of the
input does not vary, referencing a previous value is not necessary.

28 EasyLanguage Control Structures CHAPTER 2

EasyLanguage Control Structures
EasyLanguage has three types of statements that control the actions that are performed un-
der different circumstances. These statements enable you to perform actions: only when
certain conditions are true, for a period during which certain conditions are true, or for a
fixed number of iterations.

In EasyLanguage, the three main control structures are:

IF-THEN statement

While loop

For loop

Each is described next.

Advanced Tip: “Assigning Series Values to Inputs”
Inputs are evaluated every instance they are referenced in the body of a trading strat-
egy or analysis technique; this is similar to simple functions. However, series func-
tions are NOT calculated each instance. For example, if you use the AverageFC
function (a series function) four times in your procedure, it is evaluated once and
then the resulting value is referenced during the procedure.

However, there may be instances where you want to use a series function but want it
to be recalculated every instance; to force it to recalculate, you can assign the series
function to an input. The function will be called (i.e., recalculated) every instance
that the input is used.
To illustrate how inputs are calculated, we wrote a simple indicator using the
function Random. When we write the indicator without inputs, both print statements
return different values (Random is a simple function):

Print(Random(1));

Print(Random(1));

When we write this indicator using an input, to which we assign the value
Random(1), and then print the value of the input twice, the result is the same as using
the function twice. Since the input is recalculated each time it is used, each print
statement returns a different result:

Input: Val(Random(1));

Print(Val);

Print(Val);

The Basic EasyLanguage Elements EasyLanguage Control Structures 29
IF-THEN Statement
The IF-THEN statement allows you to specify operations that will be performed only
when a certain condition is true.

Syntax:
If Condition1 Then

{ EasyLanguage instruction };

Condition1 is any true/false expression, and {EasyLanguage instruction} is any
EasyLanguage statement.

For example, you can keep a count of how many times a gap up has occurred in a chart
(the open is greater than the previous bar’s high) by having an IF-THEN statement add
1 to a variable each time a gap up is found:

If Open > High[1] Then

 Value1 = Value1 + 1 ;

In this example, every time a bar gaps up, the variable Value1 is incremented by one.
As another example, you can place a buy order only when the fast moving average
crosses over the slow moving average:

If Average(Close,10) Crosses Over Average(Close,20) Then

 Buy Next Bar at Market ;

IF-THEN statements are used extensively in EasyLanguage; for example, ShowMe
studies are written exclusively with IF-THEN statements. The objective of a ShowMe
study is to identify a certain scenario, and mark any bar on which this scenario occurs.
The following example shows a typical one-statement ShowMe study, which finds and
marks each outside bar in a price chart:

If High > High[1] AND Low < Low[1] Then

 Plot1(High, “Outside Bar”) ;

If an outside bar is found, a mark is placed at the high price of the bar.

Keep in mind that only the first EasyLanguage statement after the reserved word then
is included in the IF-THEN statement. For example, take the following ShowMe study:

If High > High[1] AND Low < Low[1] Then

 Plot1(High, “Outside Bar”);

Alert;

The Alert statement is not included as part of the IF-THEN statement, and is therefore
executed on every bar. You can, however, include more than one statement in the
IF-THEN statement. To do so, use a Block IF-THEN statement.

30 EasyLanguage Control Structures CHAPTER 2
Block IF-THEN Statement
Block IF-THEN statements enable you to specify any number of statements to be
executed by the IF-THEN statement. You include the statements by using the reserved
words Begin and End around them. For example, to have the ShowMe study mark the
bar and trigger an alert each time a gap up bar is found, you can use a Block IF-THEN
statement:

If High > High[1] AND Low < Low[1] Then Begin

 Plot1(High, “OutSide Bar”);

 Alert;

End ;

All statements within the Begin-End block must end with a semicolon. You can include
as many statements as you want within the block.

IF-THEN-ELSE Statement
Also, you can structure an IF-THEN statement so that it performs a certain action if the
condition is met, and an alternate action if the condition is not met. You do this using
the IF-THEN-ELSE statement. Consider the following statement:

If Close > Close[1] Then

 Value1 = Value1 + Volume

Else

 Value1 = Value1 - Volume;

In this example, Value1 will keep the summation of the volume of the days with a
positive net change minus the summation of the volume of the days with negative net
change. Notice that there is no semicolon used until the end of the last line; in effect,
the above example is one complete statement.

Combining Block IF-THEN and IF-THEN-ELSE Statements
When you use an IF-THEN-ELSE statement, you can also use a Block IF-THEN statement
for either the IF-THEN or the ELSE instructions (or both). The following three variations
are valid forms of these IF-THEN statements:

1. Block IF-THEN with ELSE

If Condition1 Then Begin

 { EasyLanguage instruction(s) } ;

End

Else

 { EasyLanguage instruction } ;

The Basic EasyLanguage Elements EasyLanguage Control Structures 31
2. Block IF-THEN with Block ELSE

If Condition1 Then Begin

 { EasyLanguage instruction(s) } ;

End

Else Begin

 { EasyLanguage instruction(s) } ;

End;

3. IF-THEN with Block ELSE

If Condition1 Then

 { EasyLanguage instruction } ;

Else Begin

 { EasyLanguage instruction(s) } ;

End;

Nesting an IF-THEN Statement
You can also nest IF-THEN statements. Nesting is a term used when one control structure
is included within another; therefore, a nested IF-THEN statement simply means that there
are one or more IF-THEN statements within another IF-THEN statement.

For example, a trading strategy might state that it will either buy or sell when the market
gaps up. If the market closes greater than the open, the strategy places an order to buy 100
shares; if the market closes lower than the open, the strategy sells short 100 shares.

This instruction is written best using nested IF-THEN statements, as follows:

If Open > High[1] Then Begin

 If Close > Open Then

 Buy 100 shares This Bar on Close

 Else

 Sell 100 shares This Bar on Close ;

End ;

Notice that in order to nest an IF-THEN statement, we generally use the Begin-End
block, as highlighted by the gray boxes above.

While Loop
The While loop repeats the specified instructions as long as the control expression has a
value of True. When market conditions change and the control expression becomes False,
the loop is exited.

32 EasyLanguage Control Structures CHAPTER 2
Syntax:
While Condition1 Begin

{ EasyLanguage instruction(s) } ;

End;

Condition1 is any true/false expression and is called the control expression. { EasyLan-
guage instruction(s) } is any number of valid EasyLanguage statements.

For example, the following While loop is used to count the number of bars generating a to-
tal volume of 1,000,000 shares:

Variables: SumVolume(0), Counter(0) ;

SumVolume = 0 ;
Counter = 0 ;

While SumVolume < 1000000 Begin

 SumVolume = SumVolume + Volume[Counter] ;

 Counter = Counter + 1 ;

End ;

First, we declare two variables, SumVolume and Counter. Although we initialize the vari-
ables to zero (0) when we declare them, we also reset the variables to zero on each new bar.
This is so that once the total volume is reached, and the procedure moves to the next bar,
the values are reset and the loop starts over again.

The statements inside the While loop are repeated until the control expression (SumVolume
< 1000000) returns a value of False. In this particular example, the While loop adds the vol-
ume of the historical bars, one at a time, starting with the current bar (Counter = 0), and
moving backward (Counter = 1, Counter = 2, and so on) until the summation is greater than
1,000,000 shares.

Infinite Loops
When using a While loop, there is a possibility that the control expression may never eval-
uate to False, resulting in an infinite loop (i.e., one that never exits). To avoid this, when a
loop iterates for more than 5 seconds, TradeStation generates a runtime error and the trad-
ing strategy or analysis technique is turned off.

Using the above example, if the summation of the volume does not reach 1,000,000, the
loop would continue indefinitely until it runs out of data. Therefore, it is always advisable
to provide a fail-safe way for the loop to exit.

Using the above example again, we can modify the control expression so it evaluates to
False after looking at 20 bars, thus forcing the loop out either when the volume reaches the
target number or when 20 bars have been evaluated:

Variables: SumVolume(0), Counter(0);

SumVolume = 0;

Counter = 0;

The Basic EasyLanguage Elements EasyLanguage Control Structures 33
While SumVolume < 1000000 AND Counter < 20 Begin

 SumVolume = SumVolume + Volume[Counter];

 Counter = Counter + 1;

End;

For Loop
A For loop enables you to repeat the instructions a specified number of times.
Syntax:
For Value1 = N To {or DownTo} M Begin

{ EasyLanguage instruction(s) } ;

End;

Value1 is any numeric variable, N and M are any numeric expressions, and
{ EasyLanguage instruction(s) } is one or more valid EasyLanguage statements.

The number of times the loop iterates through the instructions is determined by the Value1
variable, which is called the control variable. Again, this can be any declared numeric vari-
able.

The value of the control variable is set to N the first time the statement is evaluated, and the
value is then incremented or decremented automatically on every iteration. If the word To
is used in the syntax, the variable is increased by one on every iteration. If the word Downto
is used, then the variable is decremented on every iteration.

Internally, the expression that is evaluated each time the loop is about to start executing the
statements is Value1 <= M, when the word To is used, and Value1 >= M, when Downto is
used. Therefore, if the For loop is incrementing the control variable and N is greater than
M, the instructions in the loop will not be evaluated. Likewise, if the loop is decreasing the
control variable and N is lower than M, the instructions are not evaluated.

For example, the following loop iterates through the instructions a total of 5 times:

For Value1 = 1 To 5 Begin

{ EasyLanguage instruction(s) } ;

End;

Value1 will start at 1 for the first iteration, then 2, 3, 4, and 5 and before the sixth iteration
will exit from the loop since Value1 will then be greater than 5.

For loops are usually used to look back a specific number of bars. For example, the follow-
ing loop is used to add the volume of the last 5 bars:

Variable: SumVolume(0);

For Value1 = 0 To 4 Begin

 SumVolume = SumVolume + Volume[Value1];

End;

34 Writing Alerts CHAPTER 2
Notice that this loop also uses the control variable as the bar offset for the reserved word
Volume, as highlighted in gray. Also, since we want to consider the volume of the current
bar (Volume[0]), we use the values 0 to 4 for our loop, instead of 1 to 5 as we did in the
previous example. This is a common and effective practice.

You can terminate the loop early by modifying the value of the control variable. Using the
previous example, if you want to stop the summation once it reaches 500,000, you can use
the following instructions:

Variable: SumVolume(0);

For Value1 = 0 To 4 Begin

 SumVolume = SumVolume + Volume[Value1];

 If SumVolume > 500000 Then

 Value1 = 5;

End;

For loops are used in many of the default trading strategies, analysis techniques, and built-
in functions in TradeStation. Among the most common are the built-in functions (e.g., Av-
erage, Summation, Highest, Lowest, MRO).

Writing Alerts
When creating analysis techniques in TradeStation, you have the option of enabling an au-
dio or visual alert, as well as e-mail and/or pager messaging. You can use a single alert no-
tification method or a combination. When an alert is triggered, the alert is logged in the
TradeStation Message Center and a dialog box appears, as shown in Figure 2-3. A notifi-
cation sound is also played at the same time.

The dialog box displays the name of the symbol, the name of the analysis technique, the
price of the symbol at the time the alert was triggered and a description of the alert. All this
information is also logged in the Message Center.

Figure 2-3. Alert Dialog Box

The Basic EasyLanguage Elements Writing Alerts 35
To include an alert in an analysis technique, you use alert statements. The alert description
that is displayed is written into the EasyLanguage alert statement, contained within the
analysis technique that triggered the alert.

You can include alert statements in:

Indicators
ShowMe studies
PaintBar studies
ActivityBar studies
ProbabilityMap studies

You can use any of the reserved words described in this section with indicators and studies.
When the EasyLanguage criteria is met on the last bar in the price chart, an alert is trig-
gered.

Alerts are only triggered if the Enable Alert check box is selected for an indicator or study.
The Enable Alert box is located on the Alerts tab on the Format [Analysis Technique]
dialog box.

It is very important to remember that the criteria specified by the alert statement(s) must be
met on the last bar of the price chart. Historical instances of alerts are not logged in the Mes-
sage Center, nor is the Alert dialog box displayed.

Alerts can be thought of as a switch that can be turned on or off throughout the analysis
technique by using different statements. Once all instructions are read, the final state of this
switch determines if the alert is triggered or not.

For example, say that the fourth line of an indicator triggers an alert; however, the very last
line of the indicator is a statement that disables the alert. In this case, the indicator will not
trigger an alert.

Alerts are not triggered at the moment they are read, but after all the EasyLanguage state-
ments have been analyzed for the last bar of the price chart. This gives you the ability to
enable and/or disable an alert based on changing market conditions.

Following are the alert-related reserved words you’ll be using to include alerts in your in-
dicators and/or studies.

This reserved word triggers an alert and enables you to provide a description of the condi-
tions that triggered the alert.
Syntax:
Alert(“Description”) ;

Description is any user-defined text string. You use the text string to provide information
about the alert such as the market conditions that triggered it. This text string appears in the
Alert dialog box (shown in Figure 2-3) and in the Message Center. You do not have to pro-
vide a description, in which case the Alert dialog box and the description for the alert entry
in the Message Center are left blank.

Alert

36 Writing Alerts CHAPTER 2
If you include more than one Alert statement in your indicator or study, and more than one
alert is triggered, the description included with the last alert triggered is the description
shown. For example, assume the following indicator is applied to a price chart:

Plot1(Average(Close, 10), “Avg”);

If Close Crosses Over Plot1 Then

 Alert(“Price crossed over average”);

If Volume > Average(Volume,10) Then

 Alert(“Volume Alert”);

If on the last bar of the price chart both conditions are true, both alerts are evaluated. In this
case, only one alert is actually triggered and logged, and it will have the last description,
which in the above example is the alert with the description “Volume Alert”.

This reserved word is used to cancel an alert; it turns off any alerts triggered during the cur-
rent bar.

Syntax:
Cancel Alert

For example, if you write an indicator with two alert criteria, but you only want the alert to
be triggered after 11:00am, you can use the following statements:

If Close Crosses Over Average(Close,10) Then

 Alert(“Average Cross Over”);

If Volume > Average(Volume, 10) Then

 Alert(“Volume Spike”);

If Time <= 1100 Then

Cancel Alert;

If an alert is triggered by either one of the Alert statements, it is turned off by the
Cancel Alert statement unless it is after 11:00am. Once it is after 11:00am, the alert is
triggered when either Alert statement is true.

This reserved word determines whether or not the current bar is the last bar on the price
chart and whether or not the alert is enabled for the indicator or study.

When the alert is enabled and it is the last bar on the chart, this reserved word returns
a value of True. This reserved word will return a value of False for all other bars on the
price chart, and on the last bar of the price chart if the alert is not enabled.

Cancel

CheckAlert

The Basic EasyLanguage Elements Writing Alerts 37
This allows you to optimize your indicators and studies for speed; you can have the
indicator or study skip all statements relating to the alert unless it is the last bar of the
price chart and the alert is enabled.

Syntax:
CheckAlert

For example, the following statements can be used to trigger an alert when the volume
is twice the average volume, and to display the ratio between the current volume and
the average. Because CheckAlert is used, the calculations are ignored for all historical
bars as well as when the alert is not enabled.

If CheckAlert Then Begin

Value1 = Volume / Average(Volume, 10);

If Volume >= 2 * Average(Volume, 10) Then

Alert (“Volume is" + Value1);

End ;

Note: Using CheckAlert in an IF-THEN statement to optimize your analysis technique
is effective; however, even when the statements that follow are ignored, the indicator
or study still takes into account the statements in order to determine the number of bars
necessary for the indicator or study to perform its calculations (MaxBarsBack), and
any series functions are calculated. Refer to the section “Using Alert Compiler
Directives” on page 38 for information on other reserved words you can use to have
the statements ignored completely.

This reserved word returns a value of True when the alert is enabled for the indicator
or study applied to a price chart (and False when it is not). This allows you to optimize
the indicator or study for speed; the statements after this reserved word are evaluated
only when the alert is enabled.

The difference between this reserved word and the CheckAlert reserved word is that
AlertEnabled returns a value of True for all bars when the alert is enabled whereas
CheckAlert returns a value of True only for the last bar on the chart.

Syntax:
AlertEnabled

For example, the following statements calculate a cumulative advance/decline line and
an alert is triggered when the cumulative advance/decline line hits a 50-bar high:

If AlertEnabled Then Begin

 If Close > Close[1] Then

Value1 = Value1 + Volume

AlertEnabled

38 Writing Alerts CHAPTER 2
 Else

 Value1 = Value1 - Volume;

 If Value1 > Highest(Value1,50)[1] Then

 Alert(“New A/D line high”);

End;

In this example, the advance/decline line will only be calculated if the alert is enabled, and
it will be calculated for all bars on the price chart, not just the last bar.

Note: Although the statements that follow this reserved word are sometimes ignored,
the indicator or study still takes into account the statements when it determines the
number of bars necessary for the indicator or study to perform its calculations
(MaxBarsBack), also any series functions within the statements are calculated. See the
section “Using Alert Compiler Directives” on page 38 for information on additional
reserved words you can use to have the statements ignored completely.

Using Alert Compiler Directives
These reserved words are compiler directives that cause your indicator or study to
completely ignore the statements that follow the reserved word unless the alert is
enabled for the indicator or study. The indicator or study will not take into account the
statements following these words when it determines the number of bars necessary to
perform its calculations (MaxBarsBack), nor will any series functions within the
statements be calculated.

The statements between this compiler directive (#BeginAlert) and the reserved word
#End are evaluated only when the alert is enabled for the analysis technique. You must
use the reserved word #End with this reserved word.

Syntax:
#BeginAlert ;

{EasyLanguage instruction(s) } ;

#End ;

For example, an indicator that calculates the 10-bar momentum of the closing price
needs ten bars in order to start plotting results. However, if an alert is added to this
indicator and the alert uses a 50-bar average of the volume, then the bar requirement is
upped to fifty. However, the 50-bar average is only used for the alert calculations, so
there is no need to have the indicator wait fifty bars before returning results unless the
alert is enabled.

Therefore, to have the indicator plot results after ten bars and ignore the 50-bar
requirement, use #BeginAlert in your indicator, as follows:

#BeginAlert

The Basic EasyLanguage Elements Writing Alerts 39
Plot1(Close - Close[10], “Momentum”) ;

#BeginAlert ;

 If Plot1 Crosses Over 0 AND Volume > Average(V, 50)* 2 Then

 Alert(“Momentum is now positive”) ;

#End ;

The above indicator plots the momentum and triggers an alert if the momentum
becomes positive while experiencing volume that is greater than twice the 50-bar
average. When the indicator is applied without enabling the alert, it requires only ten
bars to start calculating. When the alert is enabled, the indicator is recalculated; the
statements within the compiler directives are evaluated and the new requirement is 50
bars.

When the commentary and alert statements are intertwined, and the commentary and
alert statements are not necessary for the normal plotting of the indicator or study, use
the reserved word #BeginCmtryOrAlert. The statements between this compiler
directive and the reserved word #End are evaluated only when either commentary is
generated or the alert is enabled. You must use the reserved word #End with this
reserved word.

Syntax:
#BeginCmtryOrAlert ;

{EasyLanguage instruction(s) } ;

#End ;

For example, the following indicator plots the 10-bar momentum of the close, and
triggers an alert when the momentum becomes positive while experiencing volume that
is greater than twice the 50-bar average. In addition, commentary is written to help
point out the market conditions bar by bar.

Plot1(Close - Close[10], “Momentum”);

#BeginCmtryOrAlert ;

 If Plot1 > 0 Then

 Commentary(“Momentum is positive, ”)

 Else

 Commentary(“Momentum is negative, ”);

 If Volume > Average(Volume, 50) Then Begin

 Commentary(“and volume is greater than average.”);

 If Volume > Average(Volume, 50) * 2 Then

Alert;

#BeginCmtryOrAlert

40 Understanding Arrays CHAPTER 2
 End

 Else

 Commentary(“and volume is lower than average.”);

#End ;

Understanding Arrays
Arrays are variables that store multiple values simultaneously. Think of an array as
being like a spreadsheet, which has a predetermined number of cells. For example, an
array called MyArray that has 6 cells (which in an array are called elements) will look
like a one-column spreadsheet document, as shown in Figure 2-4.

The example array in Figure 2-4 is said to have one dimension and 6 elements; you refer-
ence the information in the array using one number. For example, in the above array, ele-
ment 1 contains a value of 3, and element 2 contains a value of 5.

However, you can define arrays with multiple dimensions. For example, you can define a
two-dimensional array, which will look like multiple rows and columns in a spreadsheet
document, as shown in Figure 2-5.

In this case, you use two numbers to reference each element [row, column]. For example,
the illustration above shows a two-dimensional array containing 27 elements. Element [1,
0] contains the value 980503, and element [5, 2] contains the value 103.125.

Figure 2-4. Array with one dimension

Figure 2-5. Array with two dimensions

The Basic EasyLanguage Elements Understanding Arrays 41
Or, you can define an array with three dimensions, which we can envision as looking more
like a cube, with rows, columns, and multiple layers. To reference the element of a three
dimensional array, you’ll use three numbers (e.g., element [1,0,1]).

You can define an array with up to 10 dimensions. It is hard to envision an array with more
than three dimensions, let alone 10 dimensions; instead, just understand that to reference
an element in a 4-dimensional array, you’ll need to specify four numbers (e.g., element [2,
1, 1, 3]) and to reference an element in a 10-dimensional array, you’ll need to specify 10
numbers (e.g., element [1, 3, 6, 1, 0, 4, 5, 2, 1, 1]). The numbers are the address where a
value is stored.

Like variables, arrays are place holders that can hold values, although instead of being able
to hold only one value, they can hold as many values as the number of elements they have
available.

Arrays are used for many different purposes, the most common being to store informa-
tion about relevant market conditions during the analysis of price data—to store infor-
mation about what happened during previous bars.

For example, Figure 2-5 illustrates a multi-dimensional array with four columns and sev-
en rows that was used to store information on seven different bars; each row corresponds
to a bar, and each column corresponds to a piece of information for that bar (date, time,
price, and volume for each bar).

Arrays can store either numeric, true/false, or text string expressions, but they can only
store one type of expression at a time. Also, the values in all elements of the array are car-
ried forward from bar to bar.

When working with arrays, you declare an array, assign values to the elements of the array,
and reference the values of the elements within an array. How to do each is discussed next.

Declaring Arrays
Before you can use a name as an array, you must ‘tell’ EasyLanguage that the name is to
be used as an array; this is known as declaring the array(s). To declare an array, you use an
Array Declaration statement. When you declare an array, you also specify the array’s
dimensions (and the number of elements in each dimension), and the initial value for all the
elements.

Syntax:
Array: MyArray[M](N);

MyArray is a user-defined name for the array, which can be a total of 20 characters in
length, M is a number (or numbers) specifying both the dimensions of the array and the
number of elements in each dimension, and N is the initial value of all the elements in
the array.

For example, the following statement declares a one-dimensional array with a total of
6 elements:

Array: MyArray[5](0);

42 Understanding Arrays CHAPTER 2
The array called MyArray will have elements 0, 1, 2, 3, 4, and 5. The elements in this
array will start with a value of zero (0).

The following Array Declaration statement declares a 3-dimensional array with a total
of 726 elements:

Array: MyBigArray[10, 10, 5](0);

The array MyBigArray will hold a maximum of 726 elements (11x11x6) and all
elements will begin with a value of zero (0).

 Once declared, the size of the array cannot be changed; whatever dimensions the array
is created with will be constant throughout the EasyLanguage trading strategy, analysis
technique, or function.

You cannot use inputs, variables, or any other numeric expressions when defining the
size of the array in the Array Declaration statement. You must use a numeric literal
(i.e., a number).

Arrays can hold all three types of EasyLanguage expressions: numeric, true/false, and
text string. In order to create arrays that hold each different type of expressions, set the
initial value of the elements using the desired type of expression. For example, to create
an array that holds true/false values, you can use the following Array Declaration
statement:

Array: MyTFArray[10](False);

The above statement creates a single dimension array with a total of 11 elements, all of
which are set to False to begin with. Likewise, to create an array that will contain text
string expressions, you can use the following statement:

Array: MyTextArray[10]("");

Assigning Values to Elements in an Array
Once you have declared your arrays(s), you can assign values to the elements in the array
at any point in your trading strategy, analysis technique, or function.
Syntax:
MyArray[M] = EasyLanguage expression ;

MyArray is the name of the array and M is a numeric expression representing the element
in the array to which you are assigning the value. EasyLanguage expression is the value
that you are assigning to the element.

For example, the following statement assigns a value of 10 to element 5 of the one-
dimensional array called MyArray:

MyArray[5] = 10 ;

The following instructions store the closing prices and volume for each of the last 10
bars in a two-dimensional array:

The Basic EasyLanguage Elements Understanding Arrays 43
Array: MyArray[9, 1](0) ;

For Value1 = 0 To 9 Begin

 MyArray[Value1, 0] = Close[Value1] ;

MyArray[Value1, 1] = Volume[Value1] ;

End ;

Loops are often used to populate arrays. In the above instructions, an array called
MyArray is declared. It is a two-dimensional numeric array, with a total of 20 elements,
all of which are initialized to a value of 0.

The loop uses the pre-declared variable Value1 as the control variable, and the loop will
iterate through the instructions 10 times (0 to 9). On the first iteration, the close of the
current bar (Close[0]) is assigned to MyArray[0,0], and the volume of the current bar
(Volume[0]) is assigned to MyArray[0,1]. Value1 is incremented to 1 for the second
iteration through the loop, so now the close and volume of one bar ago are stored in the
array, in MyArray[1, 0] and MyArray[1,1], respectively. Again, this loop iterates a total
of 10 times, and the result is that the closing prices and volume for the current and
previous 9 bars are stored in the array, for reference at any time.

Referencing Values of Array Elements
Once you have declared an array, and you have assigned values to elements in the array,
you can reference the values of the elements by using the name of the array and the element
number in place of the numeric, true/false, or text string expression.

For example, the following statement assigns the value held in element 10 to the
numeric variable Value1:

Value1 = MyArray[10];

Also, arrays can be used wherever an expression can be used. For example, you can
plot the value held in element 0 of an array:

Plot1(MyArray[0]);

Or, you can use the true/false value of an element in an array as the true/false
expression in an IF-THEN statement:

If MyConditionArray[7] Then

{EasyLanguage instruction } ;

You can also reference the previous value of an array. For example, the following
statement references the value that element 5 of an array called MyArray held 10 bars
ago:

Value1 = MyArray[5][10];

It is important to keep in mind the size of the array because the application to which you’ve
applied the trading strategy or analysis technique will generate a runtime error and turn off

44 Understanding User Functions CHAPTER 2
the analysis technique if you reference or assign a value to an element that does not exist in
the array.

For example, the indicator below uses a loop to reference element 11 in an array that only
has elements 0 through 8, the application to which you applied the indicator will generate
a runtime error and turn off the indicator:

Array: MyArray[8](0);

For Value1 = 1 To 11 Begin

 MyArray[Value1] = Value1;

End;

Understanding User Functions
A user function is a defined set of instructions that you reference by name, and that return
a value. The value returned by functions can be numeric, true/false, or text string, and
you can use functions in any part of a statement that requires a value.

For example, in trading, it is very common to calculate the range of a bar (the high minus
the low). Every time EasyLanguage users need to calculate the range of a bar, they don’t
need to write out the expression (High - Low) because EasyLanguage provides a function

Advanced Tip: “Working with Series Arrays”

As a memory optimization, EasyLanguage automatically determines if a prior value
of any element of an array is accessed at any point in the trading strategy, analysis
technique, or function, and then, if required, stores the historical values for the array.
EasyLanguage stores only as much history as it needs to fulfill the MaxBarsBack
setting. For example:

Value1 = MyArray[5][10] * 1.05;

Value2 = MyOtherArray[6] - Value1 ;

Plot1(Value2);

The indicator stores all the prior values of MyArray, given that a historical value of
the array is referenced in the first line. The variable Value2 and MyOtherArray are
both simple, thus historical values for this variable and array are not stored.

In other words, arrays can be either series or simple structures. This is important
when you want to access the values of array elements from third-party languages
through DLLs because depending on the state of the array, there will be more or less
historical data stored than you require. In this scenario, you can force an array to be
a series array by referencing a previous value of an element in the array in your
trading strategy, analysis technique, or function (i.e., by using a ‘dummy’ statement).
Or, you may want to consider working with functions; you can force a function to be
a series function. Refer to the next section in this chapter titled, “Understanding User
Functions” on page 44 for more information.

The Basic EasyLanguage Elements Understanding User Functions 45
called Range. Whenever you need the calculation for the range of a bar, you can use the
EasyLanguage user function Range instead of writing out the expression. Range is one
of the simplest functions available in EasyLanguage; there are hundreds of functions
available for your use, plus you can write your own.

Another concept you need to understand when working with functions is the concept of
parameters. When necessary, user functions are written with parameters (also referred to
as inputs or arguments). Parameters allow the person using the function to provide pieces
of information that the function needs to perform its calculations.

For example, the user function Average is written with a parameter called Length.
Therefore, instead of having one function for a 10-bar average, another for a 12-bar
average, and another for a 15-bar average, etc., there is only one Average user function,
and the user can specify the number of bars the function will use to calculate the average.

Also, creating a function to calculate the average of the close, another for the average of
the open, another of the average of the volume, etc. would be very inefficient. Therefore,
the Average function also has a parameter called Price which enables the user to specify
the price or data that will be averaged.

The following statement calculates the average of the closing prices of the last 10 bars
and assigns the result to the variable Value1:

Value1 = Average(Close, 10);

The parameters for user functions are enclosed in parentheses after the function, and each
parameter is separated by a comma. Depending on the function, parameters can be required
or optional. Parameters are discussed in detail in “Understanding Parameters and Parameter
Types” on page 52.

Using Existing Functions
For your convenience, the EasyLanguage PowerEditor provides the EasyLanguage Dictio-
nary—which is a tool that lists all the EasyLanguage reserved words and existing user func-
tions, grouped by category. The EasyLanguage Dictionary allows you to browse and/or
search through the list of words and functions, and provides definitions for reserved words
and functions. You can access the EasyLanguage Dictionary through the Tools - EasyLan-
guage Dictionary menu sequence from any EasyLanguage PowerEditor Document.

TradeStation is provided with a vast library of built-in user functions, which range from
commonly-used industry calculations (e.g., ADX, DMI, CCI) to common mathematical
and statistical operations (e.g., AbsValue, Sine, Square). Whenever you need to perform a
calculation, instead of writing the calculation yourself in EasyLanguage, first use the Easy-
Language Dictionary’s Find feature to search for an existing function that will perform the
calculation. You can also use the functions as a reference or learning tool when writing your
own functions.

If you are not sure if a function will do exactly what you want, highlight the function in the
EasyLanguage Dictionary and click the Definition button for a description of the user func-
tion and its usage.

46 Understanding User Functions CHAPTER 2
The EasyLanguage Dictionary is an indispensable reference that you will be using often as
you work with EasyLanguage.

Referencing Previous Values of Functions
You can reference the values of functions on previous bars. For example, the following
statement refers to the value of the 10-bar average of the volume one bar ago:

Value1 = Average(Volume, 10)[1];

In the above example, the function itself is being offset.

Using Previous Values as Parameters
You can also offset the value that you pass as the parameter. For example, you can also
write the following statement:

Value1 = Average(Volume[1], 10);

What is offset is the value that is passed into the function as the parameter, not the function
itself. In the above example, the function will use the previous bar’s volume to perform the
calculation. In this instance, the results are the same for both of the above statements. How-
ever, the difference in the results can be significant depending on the calculation being per-
formed.

For example, suppose there is a function called OpenDiff that calculates the difference be-
tween the open of the current bar and the value passed to the function through the parame-
ter. The function takes the value passed and subtracts it from the open of the current bar
using the following formula: OpenDiff = Open - Price where Open is the opening price of
the bar and Price is the parameter for the function. Assume you write the following state-
ment:

Value1 = OpenDiff(Close)[1];

EasyLanguage obtains the value of the function on the previous bar. The value returned is
equal to the open of the previous bar minus the close of the previous bar. However, assume
you write the following statement instead:

Value1 = OpenDiff(Close[1]);

The function will subtract the close of the previous bar from the open of the current bar,
yielding a completely different result than the previous statement.

Using Data Aliases
When applying a trading strategy or analysis technique to a price chart, the procedure is ap-
plied to a data stream.

By default, all trading strategies and analysis techniques are based on the data stream to
which the procedure is applied and all calculations default to using the data from it. How-
ever, you can refer to any available data stream.

For example, you can apply an indicator to a price chart of IBM and MSFT that references
both symbols.

The Basic EasyLanguage Elements Understanding User Functions 47
To refer to a data stream other than the one to which the trading strategy or analysis
technique is applied on a chart, you add the data alias of dataN after the function. For
example, the following statement calculates the 20-bar average of the close of the second
symbol in a price chart even though the indicator is applied to the first symbol:

 Value1 = Average(Close, 20) of data2 ;

For example, when an indicator is applied to a stock that is plotted as Data1, and the second
data stream is the Dow 30, the indicator can calculate the 10-day average volume of the
Dow 30 and incorporate this calculation into the analysis of the stock. The statement would
be written as follows:

Value1 = Average(Volume, 20) of data2 ;

Again, when no data alias is specified, EasyLanguage assumes the function is meant to be
based on the data stream to which the procedure is applied. So, if an indicator is applied to
a price chart that has three stocks, and the following statement is used in an indicator:

Value1 = Average(Volume, 20);

...the average of the volume will be calculated based on the symbol to which the indicator
is applied.

Note: When formatting the indicator on a price chart, under the Data tab there is an
option to choose what symbol the indicator is based on, as shown in Figure 2-6. This
selection displays the data stream to which the indicator is currently applied.

When working with price charts, you can also base only the parameter for a function on
another data stream as opposed to the entire function. Consider the following statement:

Value1 = Average(Volume of data2, 10);

In the above statement, the data alias is used in the parameter of the function.

Figure 2-6. Indicator Properties tab

48 Understanding User Functions CHAPTER 2
As with bar offsets, the difference between using a data alias for the entire function versus
the parameter is subtle, but it can result in significantly different results depending on the
calculation being performed.

For example, let’s use the function we used earlier to discuss bar offsets, OpenDiff. This
function calculates the difference between the open of the bar and a value passed to the
function. The function subtracts the value from the open of the current bar: OpenDiff =
Open - Price. Assume we write the following statement:

Value1 = OpenDiff(Close) of data2;

EasyLanguage bases the entire calculation of the function on the second data stream; it uses
both the open and the close of the second data stream, and it returns the difference. Now,
assume we rewrite the statement as follows:

Value1 = OpenDiff(Close of data2);

The function is based on the first data stream, but will calculate the OpenDiff function using
the open of the current bar of data1 and the close of the current bar of data2. The value re-
turned would be the value of the first data stream’s open minus the second data stream’s
close.

Writing User Functions
The only statement required in a function is the one that specifies what value the
function will return. This statement is called the Function Value Assignment statement,
and it consists of the name of the function followed by an equal to sign (=) and then
the expression representing the value of the function.

For example, if there is a function called One that returns the numeric value 1, all the
function needs is the statement:

One = 1;

Likewise, a function named HigherHigh that returns true if the current bar’s high is greater
than the previous bar’s high can be written using the following statement:

HigherHigh = High > High[1];

The value of True or False is assigned to the function HigherHigh by means of the Function
Value Assignment statement, and this value is returned as the value of the function.

Or, a function called TenBarAvg that calculates the 10-bar average of the volume using a
For loop would look like this:

Value2 = 0;

For Value1 = 0 To 9 Begin

 Value2 = Value2 + Volume[Value1];

End;

TenBarAvg = Value2 / 10;

The Basic EasyLanguage Elements Understanding User Functions 49
A function can return a numeric, true/false, or text string value. You specify what type
of value the function will return when you create the function or format its properties
in the EasyLanguage PowerEditor, as shown in Figure 2-7.

Any of the EasyLanguage components explained in this chapter; for example, IF-THEN
statements, loops, variables, arrays, math and relational operators, and even other
EasyLanguage functions can be used to perform calculations within an EasyLanguage
function, and once you calculate the desired resulting value, you assign the value to the
function name using a Function Value Assignment statement.

Understanding Function Types: Simple & Series
Most functions are simple functions. These functions perform a calculation and return a val-
ue. However, some functions are series functions. Series functions reference previous val-

Figure 2-7. Function Properties in the EasyLanguage PowerEditor

50 Understanding User Functions CHAPTER 2
ues of the function itself, variables and/or arrays within the function. When the function
includes counters and accumulation operations from bar to bar, they are series functions.

Using a previous value of the function within the function itself is a commonly used tech-
nique, and in fact, many industry standard indicators—exponential averages, ADX,
MACD—use this technique. Let’s look at the considerations involved with each type of
function.

Simple Functions
Simple functions cannot refer to previous values of the function itself, or previous values
of any variables or arrays declared in the function when performing its calculations.

Simple functions require less memory and calculate faster than series functions. This is be-
cause the resulting values of these functions, and all their variables and arrays, are not cal-
culated and stored on a bar by bar basis. These functions are calculated only when they are
called by the trading strategy or analysis technique.

The built-in function called Summation is included in TradeStation and is an example of a
simple function. It is shown below:

Inputs: Price(NumericSeries), Length(NumericSimple) ;

Variables: Counter(0), Sum(0) ;

Sum = 0 ;

For Counter = 0 To Length - 1 Begin

Sum = Sum + Price[Counter];

End;

Summation = Sum ;

Even though the function references previous values of a parameter (Price), it is a simple
function because it does not reference previous values of itself, or of any variables or ar-
rays.

Series Functions
A series function can refer to previous values of itself, or previous values of any variables
or arrays declared in the function when performing its calculations. Series functions are ex-
ecuted on a bar by bar basis even if the function is not explicitly called on each bar. When
variables or arrays are used as parameters, the series functions are calculated each and ev-
ery time they are called. Otherwise, the function is calculated once per bar, at the end of the
procedure.

To illustrate why series functions are executed on each bar, let’s look at the BarNumber
function, which is included in the EasyLanguage PowerEditor. This function counts the
number of bars that have passed since the trading strategy or analysis technique started its
calculations. This function is written using only one statement, as follows:

BarNumber = BarNumber[1] + 1;

The Basic EasyLanguage Elements Understanding User Functions 51
To obtain the current bar’s value, this function will read the value of itself from one bar ago,
and add one to that value. This way the function will keep a running total of the number of
bars. Assume we use this function in an indicator, as follows:

If Close > Open Then
Plot1(BarNumber);

Following is a table that illustrates the first eight bars of a chart.

As seen in Figure 2-8, the function is called during bars one through five (because the
close is greater than the open) yet the condition necessary to call the function is not true
for bars six and seven. If the function were not calculated during those bars, it could not
increment its value to keep an accurate count of the bar number. Furthermore, if on bar
eight, the function referred to BarNumber[1], it would not be clear to what value the
function is referring.

Again, if a series function is not called on a specific bar, it is executed at the end of the pro-
cedure in order to perform the calculations and store all values—of the function itself and
any variables and/or arrays in the function—for later reference by the function itself.

Also, if the same series function is called two or more times in a bar using the same pa-
rameters, and the function does not use variables or arrays as parameters, then the func-
tion is only calculated once per bar, and the value resulting from this initial calculation
is used for the other times the function is called (to maximize calculation speed). How-
ever, if a function uses a variable or array as a parameter, or has different parameters,
then the function is calculated each and every time it is called within the bar. For exam-
ple, assume you wrote the following indicator:

MyValue1 = MySeriesFunction(Close, 25);

MyValue2 = MySeriesFunction(Close, 25);

MyValue3 = 10;

If Condition1 Then

Value1 = XAverage(Close, MyValue3);

Figure 2-8. Series function example - BarNumber

52 Understanding User Functions CHAPTER 2
MyValue3 = 20;

If Condition2 Then

Value1 = XAverage(Close, MyValue3);

The first two lines call the same series function, and they do not use variables or arrays
as parameters; therefore, the function MySeriesFunction is calculated only once and
the value is assigned both to MyValue1 and to MyValue2.

However, the function XAverage uses a variable as a parameter; therefore, the function
is calculated twice each bar. This is to make sure that the function is calculated with
the most current value of the variable that is used as the parameter. In the above
example, the value stored in MyValue3 does indeed change for the second calculation
of the function. Parameters are discussed in detail in the next section.

Also, when you’re receiving data and have the Update on every tick option enabled for
an analysis technique, EasyLanguage evaluates the analysis technique as well as any se-
ries functions that are referenced by the analysis technique for each new tick. To keep
accumulated values accurate, each time a new tick is received, all variables, arrays and
function values are “pushed-back” to their values from the previous bar, and the calcula-
tion based on the most recent tick is performed. This ensures that the analysis techniques
and functions perform their calculations as though each tick were the last tick of the bar.

Understanding Parameters and Parameter Types
Many functions are written such that they ask you provide certain information to them
when you use them. You provide information to a function by means of parameters.

There are three types of parameters: numeric, true/false, and text string:

Numeric - When a parameter is defined as numeric, the user of the function can pass
any number (e.g., 5, 10, or 100) or numeric expression as the parameter into the
function. This parameter will be used within the function as a numeric expression.

True/false - When a parameter is defined as true/false, the user of the function can
pass any true/false expression (or the words True or False) as the parameter into the
function. These parameters can then be used within the function as a true/false
expression.

Advanced Tip: Speeding Up Calculation Time

When you use a series function as a parameter for a simple function, and that
particular parameter is used repeatedly throughout the simple function, the
calculation time for the trading strategy or analysis technique can increase
noticeably. This situation produces an increase in overhead because the series
function must be calculated each time that the simple function is referenced. To avoid
this situation, assign the series function to a variable and then use the variable as
the parameter for the simple function. This simple adjustment eliminates the
overhead, since the series function is only called once, when it is assigned to the
variable.

The Basic EasyLanguage Elements Understanding User Functions 53
Text string - Text string parameters allow the user of the function to pass any text
string value (e.g., “ABC”) or text string expression as a parameter into the function.
These parameters can then be used within the function as a text string expression.

Like the function itself, a parameter can be of subtype simple, series, or it can be of another
subtype, type reference. Each subtype is described next.

Simple Parameters
Simple parameters are constant values that are set in the trading strategy or analysis tech-
nique that calls the function. Simple parameters require less memory and improve speed.
They retain their values within the function; simple parameters cannot have values assigned
to them within the body of the function.

When the user is expected to provide a number, for instance (i.e., 10, 15, or 20), you should
define the parameter as numeric simple. For example, the Average function provides a pa-
rameter called Length, which enables you to specify the number of bars to use when calcu-
lating the average. Since this number does not change from bar to bar (it is a fixed number
such as 9, 18, or 50) there is no need to store previous values of it. Therefore, to improve
speed and memory usage of the function, Length is defined as a numericsimple parameter.

When the function calls for a simple parameter, the user can supply any value, function,
variable, or array.

Series Parameters
Like simple parameters, series parameters are constant values that are set in the trading
strategy or analysis technique that calls the function. However, when the function refers to
previous values of the value you use as the parameter (e.g., Value1, Condition1, or Close),
then this parameter must be defined as a series parameter.

The values of series parameters are stored for each bar, and current and historical values
are accessible from within the body of the function. This allows the function to refer to the
previous bar’s value of the parameter (regardless of whether the function itself is of type
simple or series). Series parameters consume more memory and impact the speed of your
calculations to some extent, but they are needed to refer to historical values of the parame-
ter.

For example, the Average function provides a parameter called Price, which enables you
to specify what value is going to be averaged. To calculate a 10-bar average of the close,
the function will need to access the last 10 closing prices of the symbol; therefore, the pa-
rameter Price is defined as a numeric series parameter.

However, series parameters cannot have values assigned to them within the body of the
function. When the function calls for a series parameter, the user can supply any value,
function, variable, or array.

Reference Parameters
Parameters can be passed by value or by reference. When the parameter passes information
by value, as is the case with simple and series type parameters, the function creates a copy
of the information passed into it, and whatever is done with the parameter in the function
does not affect the value of the parameter within the trading strategy or analysis technique
that called the function.

54 Understanding User Functions CHAPTER 2
However, when information is passed by reference, the function uses the original informa-
tion from the trading strategy or analysis technique that called the function, and any calcu-
lations the function performs on the parameter are reflected in the value of the parameter
within the trading strategy analysis technique that called the function as well as within the
function.

This is best visualized using an example. Suppose that you have added a picture to a word
processor document. If a picture is added by value, a copy of the picture is created in the
word processor document. If the original picture is modified, the picture in the word pro-
cessor document remains unchanged, and vice versa.

However, if the picture is inserted by reference, the document uses the original picture, and
if the picture is modified in the word processor document, the original picture is modified
as well. Also, if the original picture is modified, the picture in the word processor document
reflects the change.

When a parameter passes information by value, it can be either simple or series. When it
passes information by reference, it must be of type reference. You can use variables, func-
tions, and arrays when the function calls for reference parameters.

When a variable is passed by reference, the function will use the variable from the analysis
technique that called the function, so any operations the function performs on the parame-
ters will be reflected in the variable in the or analysis technique as well as in the function.

For example, suppose there is an indicator that calculates two numbers representing the up-
per and lower values of a channel. Instead of creating two functions, one to calculate the
upper band and one to calculate the lower band, a function can accept two variables by ref-
erence. Then, the function can calculate these two values and assign the result to each one
of the variables passed by reference. Once the function is called, the variables in the indi-
cator will have the values corresponding to the upper and lower bands.

Figure 2-9 shows the EasyLanguage for the Bands Indicator. The function we wrote to
calculate the two bands is called MyBands. Notice how the variables for the indicator are
also the parameters we passed by reference to the MyBands function.

Figure 2-9. Indicator using a function with inputs passed by reference

The Basic EasyLanguage Elements Understanding User Functions 55
The MyBands function is shown next. This function defines the upper band as the highest
high of the last 10 bars, and the lower band as the lowest low of the last 10 bars.

Inputs: UpperBand(NumericRef), LowerBand(NumericRef);

UpperBand = Highest(High, 10);

LowerBand = Lowest(Low, 10);

MyBands = 1;

Notice that the function assigns a value of 1 to MyBands. This is a required statement, and
in the indicator, the value (1) is assigned to the variable Value1. Remember that every func-
tion must contain an assignment statement, and will return the value assigned. However,
the purpose of the function in the example is to calculate and assign the values to the
UpperBand and LowerBand variables, and these values are used by the indicator.

Given that the values of variables and arrays are stored on a bar by bar basis, reference pa-
rameters allow the reference of previous values using bar offsets.

The first line in the above function is an Input Declaration statement, which specifies the
parameters that must be supplied by the user when using the function. The next section cov-
ers how to declare the parameters when writing a function.

Defining Parameters
As discussed in the previous section, parameters can be of type numeric, truefalse, or
string, and they can be of subtype simple, series or reference.

When writing a function, you must define what parameters the function will require from
the user of the function. To do so, you use the Input Declaration statement. You can declare
multiple parameters (of same or different types) using one Input Declaration statement. For
example:

Input: MyNumber(NumericSimple);

The above Input Declaration statement declares a numeric simple parameter. To define
a numeric series parameter, you use:

Input: MyNumber(NumericSeries);

To define a numeric reference parameter, you use:

Input: MyNumber(NumericRef);

The prefix determines the type: Numeric, TrueFalse, or String, and the suffix determines
the subtype, Simple, Series, or Ref. For example, to define two true/false parameters, one
series and one reference, you would use the following Input Declaration statement:

Inputs: MyValue(TrueFalseSeries), MyValue1(TrueFalseRef);

Or, to define a string simple parameter:

Input: MyString(StringSimple) ;

56 Understanding User Functions CHAPTER 2
Note: You can define the parameter as Numeric, TrueFalse, or String, without
specifying the subtype. In this case, EasyLanguage automatically detects whether the
parameter is simple or series (however, if the parameter is subtype reference, you must
explicitly define it as such).

Working with Arrays
Declaring a parameter as an array is a little different. To declare an array, you must
specify whether it is numeric, true/false, or string, that it is an array, and whether or not
it is of subtype reference.

Syntax:
Input: MyArray[M](Input Type);

MyArray is the name of your array, M is the expression representing the size and dimen-
sions of the array, and Input Type is one of the array parameter types:

NumericArray
NumericArrayRef
TrueFalseArray
TrueFalseArrayRef
StringArray
StringArrayRef

Note: The suffix ‘Ref’ is used when you are passing the array by reference; those
without are expecting an array passed by value.

When the array used has more than one dimension, use a corresponding list of letters sep-
arated by commas. For example, the following Input Declaration statement means the func-
tion is expecting a numeric array with three dimensions:

Input: MyNumericArray[X,Y,Z](NumericArray);

When the array is sent from the trading strategy or analysis technique to the function, these
letters (in the above example, the letters X, Y, Z) will take the numeric values correspond-
ing to the size of the array, and you can use the words within the body of the function to
work with the array. For example, if a function receives a one dimensional true/false array,
the following statements can be used to traverse the array using a For loop:

Input: MyArray[M](TrueFalseArray);

Value2 = 0 ;

For Value1 = 0 To M Begin
 Value2 = Value2 + MyArray[Value1] ;
End;

The Basic EasyLanguage Elements Understanding User Functions 57
Given that the contents of the array are stored for every bar (to allow trading strategies,
analysis techniques, and functions to refer to previous values of the array elements), it is
possible to refer to previous values of the array.

For example, assume you want the function to refer to a value 10 bars ago of the first ele-
ment of an array passed into a function, in order to compare it to the current bar’s high. To
do so, you can use the following statements:

Input: MyArray[M](NumericArray);

If MyArray[0][10] > High Then
{ EasyLanguage instruction } ;

When an array is passed by value (i.e., when it is not passed by reference), it is not possible
to assign or modify the values of the elements of the array. However, the values can be read
and used within the body of the function, and you can refer to previous values of the ele-
ments.

For example, the following statements make up a function called MaxValArray, which will
find the maximum value stored in the array (but it doesn’t change the values of any of the
elements within the array):

Input: MyNumericArray[M](NumericArray);

Variable: Result(0);

Result = MyNumericArray[0];

For Value1 = 1 To M Begin
 If MyNumericArray[Value1] > Result Then
 Result = MyNumericArray[Value1];
End;

MaxValArray = Result;

When an array is passed by reference, all its values can be modified in the body of the func-
tion; any changes made in the function will be reflected in the trading strategy or analysis
technique that called the function.

For example, the following statements make up a function called SortMyArray that accepts
an array and sorts it using the ‘bubble sort’ technique (i.e., drops the value in the last ele-
ment of the array, fills each element with the value in the element before it, and places the
latest value in the first element):

58 Output Methods CHAPTER 2
Input: MyArray[N](NumericArrayRef);

Variables: Done(False), Counter(0);

Done = False;

While Done = False Begin

 Done = True;

 For Counter = 0 To N - 1 Begin

 If MyArray[Counter] > MyArray[Counter+1] Then Begin

 Value1 = MyArray[Counter];

 MyArray[Counter] = MyArray[Counter+1];

 MyArray[Counter+1] = Value1;

 Done = False;

 End;

 End;

End;

SortMyArray = 1 ;

Notice that a dummy statement is included in the above function (highlighted in gray).
The function returns the value 1; however, in this example, the true purpose of the
function is the manipulation of the array that you pass by reference. This array is
changed by the function, and the change is reflected in the trading strategy or analysis
technique that called the function, regardless of the value the function returns.

The following statement calls the function in the above example.

Value1 = SortMyArray(MyArray) ;

This statement could be included in any trading strategy or analysis technique. Again,
in this case, the value stored in Value1 is of no importance. However, once the function
is called, the array MyArray is modified (in this case, a value has been added to the
array, and the existing elements bubble sorted).

Output Methods
In addition to the conventional means of plotting information, EasyLanguage provides
many ways of displaying information about the data being analyzed. Among the most use-
ful methods are Analysis Commentary, the Print Log tab (of the EasyLanguage Output
Bar), and writing to a file. This section discusses these three alternative output methods.

Working with Commentary
The objective of creating commentary for a trading strategy, analysis technique, or
function is to send additional information about the specific price bar selected by the
user of the procedure to the Analysis Commentary window. The information sent can

The Basic EasyLanguage Elements Output Methods 59
be anything you want; for example, market commentary or debugging messages can be
included in commentary text for the user to review. An example of commentary is
shown in Figure 2-10.

It is important to remember that when commentary is requested for a bar, the trading
strategy or analysis technique is recalculated for the entire chart (similar to turning the
status of the trading strategy or analysis technique off and then on). This is needed
because due to the optimization routines used by EasyLanguage, certain calculations
are only performed when commentary is obtained; therefore, when commentary is
requested, these calculations need to be performed from the beginning of the chart.

The reserved words used to work with commentary are described next.

This reserved word sends the expression (or list of expressions) to the Analysis
Commentary window for whatever bar is selected on the price chart.

You can use this reserved word multiple times, but it does not add a carriage return after
the expression or list of expressions.

Syntax:
Commentary(MyExpression);

MyExpression is the numeric, text string, or true/false expression that is to be sent to
the Analysis Commentary window. You can send multiple expressions; they must be
separated by commas.

Commentary

Figure 2-10. The Analysis Commentary window

60 Output Methods CHAPTER 2
To include a carriage return in your Commentary, use the reserved word NewLine as a
Commentary expression where needed. You can also use the reserved word
CommentaryCL instead (discussed next).

For example, the following statements produce the commentary shown in Figure 2-11:

Commentary(“This is commentary ”);

Commentary(“written in one line”);

As mentioned above, to include line breaks in the commentary, you need to use the
NewLine reserved word. For example, the following statements produce two lines of
commentary text:

Commentary(“The 10-bar avg of the close”, NewLine);

Commentary(“ is:”, Average(Close, 10));

Also, you can create links in your Commentary text to the Windows Media Player (to play
an audio clip) and to definitions in the TradeStation Help. The links are words in your Com-
mentary that appear in a different color and that when clicked, play an audio clip or bring
up the specified definition in the TradeStation Help. These words are referred to as jump
words.

To create a jump word that plays a music (.WAV) file, enclose the complete file name and
path of the sound file using the following syntax:

\wb<path\filename>\we

Figure 2-11. Analysis Commentary window

The Basic EasyLanguage Elements Output Methods 61
For example, to link your commentary to the file c:\ding.wav, you could write the following
statement:

Commentary(“This links to a file: \wbc:\ding.wav\we”);

To create a jump word that brings up the existing definition in the TradeStation Help,
enclose the word using the following syntax:

\pb<word>\pe

The Analysis Commentary window uses the HELP_KEY WinHelp API call and
retrieves the specified topic from the TradeStation Help. The text string between \pb
and \pe is used as the keyword, and " (Indicator)" (space, open parenthesis, Indicator,
close parenthesis) is appended to the text string. For example, the following syntax
retrieved the topic ADX (Indicator) from the TradeStation Help.

\pbADX\pe

Before creating a jump word, make sure the definition exists in the TradeStation Help.
To determine that it exists, search the Index. You can create jump words for any index
entry that has the suffix or " (Indicator)".

This reserved word sends the expression (or list of expressions) to the Analysis
Commentary window for whatever bar is selected by the Analysis Commentary
pointer.

You can use this reserved word multiple times, and it will include a carriage return at
the end of each expression (or list of expressions) sent.

Syntax:
CommentaryCL(MyExpression);

MyExpression is a single or a comma separated list of numeric, text string, or true/false
expressions that are sent to the Analysis Commentary window.

CommentaryCL

62 Output Methods CHAPTER 2
For example, the following statements produce the commentary shown in Figure 2-12.

CommentaryCL(“The close of today is:”, Close);

CommentaryCL(“The 10-day average of the close is:”,
Average(Close,10));

You can also create links in your Commentary text to the Windows Media Player (to play
a video or audio clip) using the CommentaryCL reserved word. Refer to the discussion of
jump words in the description of the Commentary reserved word.

This reserved word returns a value of True on the bar clicked by the user with the
Analysis Commentary pointer. It will return a value of False for all other bars. This
allows you to optimize your trading strategies, analysis techniques, and functions for
speed, as it will allow EasyLanguage to skip all commentary-related calculations for
all bars except for the one where the commentary is requested.

Syntax:
AtCommentaryBar

The difference between AtCommentaryBar and CommentaryEnabled (discussed next)
is that CommentaryEnabled returns a value of True for ALL bars when the Analysis
Commentary window is open, while the AtCommentaryBar returns a value of True only
for the bar clicked with the Analysis Commentary pointer.

AtCommentaryBar

Figure 2-12. Analysis Commentary window

The Basic EasyLanguage Elements Output Methods 63
For example, the following statements display a 50-bar average of the volume in the
Analysis Commentary window but avoids calculating this 50-bar average for every
other bar of the chart:

If AtCommentaryBar Then

 Commentary(“The 50-bar vol avg: ”, Average(Volume, 50));

Note: Although the statements that follow this reserved word are sometimes ignored,
the trading strategy, analysis technique, or function still takes into account the
statements when it determines the number of bars necessary for the indicator or study
to perform its calculations (MaxBarsBack), also any series functions within the
statements are calculated. See the section “Using Commentary Compiler Directives”
on page 64 for information on additional reserved words you can use to have the
statements both ignored completely.

This reserved word returns a value of True only when the Analysis Commentary
window is open and Commentary has been requested. This allows you to optimize your
trading strategies, analysis techniques, and functions for speed, as it allows
EasyLanguage to perform commentary-related calculations only when the Analysis
Commentary window is open.

Syntax:
CommentaryEnabled

The difference between CommentaryEnabled and AtCommentaryBar is that
CommentaryEnabled returns a value of True for ALL bars when the Analysis
Commentary window is open, while the AtCommentaryBar returns a value of True only
for the bar clicked with the Analysis Commentary pointer.

For example, the following statements calculate a cumulative advance/decline line to
be displayed in the Analysis Commentary window:

If CommentaryEnabled Then Begin

 If Close > Close[1] Then

 Value1 = Value1 + Volume

 Else

 Value1 = Value1 - Volume;

 Commentary(“The value of the A/D line is: ”, Value1);

End;

Note: Although the statements that follow this reserved word are sometimes ignored,
the trading strategy, analysis technique, or function still takes into account the
statements when it determines the number of bars necessary for the indicator or study
to perform its calculations (MaxBarsBack), also any series functions within the

CommentaryEnabled

64 Output Methods CHAPTER 2
statements are calculated. See the section “Using Commentary Compiler Directives”
on page 64 for information on additional reserved words you can use to have the
statements both ignored completely.

Using Commentary Compiler Directives
These reserved words are complier directives that cause your trading strategy, analysis
technique, or function to completely ignore the statements that follow the reserved
word unless commentary is enabled for the indicator or study. The trading strategy,
analysis technique, or function will not take into account the statements following
these words when it determines the number of bars necessary to perform its
calculations, nor will it calculate any series functions.

When the commentary statements are not necessary for the normal calculation of the
trading strategy, analysis technique or function, use this reserved word, #BeginCmtry.
The statements between this compiler directive and the reserved word #End are
evaluated only when the commentary is requested. You must use the reserved word
#End with this reserved word.

Syntax:
#BeginCmtry ;

{EasyLanguage instruction(s) } ;

#End ;

For example, an indicator that calculates the 10-bar momentum of the closing price
needs ten bars in order to start plotting results. However, if commentary is added to this
indicator and the commentary uses a 50-bar average of the volume, then the
MaxBarsBack setting is increased to fifty. However, the 50-bar average is only used for
the commentary, so there is no need to have the indicator wait fifty bars before giving
results unless Commentary is requested.

To have the indicator plot after 10 bars and ignore the 50-bar requirement, the indicator
can be written as follows:

Plot1(Close - Close[10], “Momentum”);
#BeginCmtry;
 If Plot1 > 0 Then
 Commentary(“Momentum is positive, ")
 Else
 Commentary(“Momentum is negative, ");
 If Volume > Average(Volume, 50) Then
 Commentary(“ and volume is greater than average.”)
 Else
 Commentary(" and volume is lower than average.”);
#End;

#BeginCmtry

The Basic EasyLanguage Elements Output Methods 65
This indicator plots the momentum and the commentary states whether the momentum
is positive or negative, and if the volume is over or under the 50-bar average of the
volume. When the indicator is applied without using commentary, it will require only
10 bars to start calculating. When commentary is requested, the indicator is
recalculated, the statements within the compiler directives are evaluated, and the new
minimum number of bars required is 50. Any series functions within these reserved
words are also ignored.

When the commentary and alert statements are intertwined, and the commentary and
alert statements are not necessary for the normal calculation of the trading strategy,
analysis technique, or function, use this reserved word, #BeginCmtryOrAlert. The
statements between this compiler directive and the reserved word #End are evaluated
only when either commentary is requested or the alert is enabled. The statements are
not considered when determining the MaxBarsBack setting, and any series functions
within these reserved words are ignored. You must use the reserved word #End with
this reserved word.

Syntax:
#BeginCmtryOrAlert ;

{EasyLanguage instruction(s) } ;

#End ;

For example, the following uses the same indicator as described in the previous
reserved word, but an alert is triggered when the volume is twice its average:

Plot1(Close - Close[10], “Momentum”);
#BeginCmtryOrAlert;
 If Plot1 > 0 Then
 Commentary(“Momentum is positive, ")
 Else
 Commentary(“Momentum is negative, ");

 If Volume > Average(Volume, 50) Then Begin
 Commentary(“ and volume is greater than average.”);
 If Volume > 2 * Average(Volume, 50) Then

Alert;
 End
 Else

 Commentary(“ and volume is lower than average.”);
#End;

#BeginCmtryOrAlert

66 Output Methods CHAPTER 2
Sending Information to the Print Log, File, or Printer
You can send information from any trading strategy, analysis technique, or function to
the Print Log tab of the EasyLanguage Output Bar. The EasyLanguage Output Bar is
available through the View - EasyLanguage Output Bar menu sequence when in an
EasyLanguage PowerEditor window, and can be used to send text that would help you
see intermediate calculations that are not shown in the end results of the trading
strategy, analysis technique, or function, or any message that would help determine the
exact behavior of an EasyLanguage statement.

The Print Log does not offer an API, nor can it be included in a workspace as it is part
of the EasyLanguage Output Bar, but it is very efficient and easy to use for debugging
purposes.

Note: The Print Log tab was added to the EasyLanguage Output Bar, replacing the
Message Log in TradeStation 2000i.

The same reserved word used to send information to the Print Log can be used to send
information to a file or printer instead.

This reserved word sends information to the EasyLanguage Print Log, a file, or the
default Windows printer. Regardless of where you send the information, the Print
reserved word always adds a carriage return at the end of the expressions, so each new
statement is placed on a new line.

Syntax:
Print([Printer, | File(“<File Name>”),] Expression);

<File Name> is the complete path and name of the file to which the Print statement is
to send the expression(s), and Expression is any expression, or a comma-separated list
of expressions. The expressions can be numeric, true/false, or text string (or any
combination).

To use the EasyLanguage Print Log as the output method, include the list of
expressions without any additional information. For example, the following statement
sends the date, time, and close to the Print Log:

Print(Date, Time, Close);

You can format the numeric expressions displayed using the Print reserved word. To
do so, use the following syntax:

Print(Value1:N:M);

Value 1 is any numeric expression, N is the minimum number of integers to use, and M
is the number of decimals to use. If the numeric expression being sent to the Print Log
has more integers than what is specified by N, the Print statement uses as many digits
as necessary, and the decimal values are rounded to the nearest value.

Print

The Basic EasyLanguage Elements Output Methods 67
For example, assume Value1 is equal to 3.14159 and we have written the following
statement:

Print(Value1:0:4);

The numeric expression displayed in the Print Log would be 3.1416. As another example,
to format the closing prices, you can use the following statement:

Print(ELDateToString(Date), Time, Close:0:4);

To send information to the default printer, Printer needs to be the first expression
included in the parentheses of the reserved word. For example, the following statement
sends the date, time, and the close of every bar of a chart to the default printer:

Print(Printer, Date, Time, Close);

Print statements for historical bars print multiple lines per page; however, Print
statements for data that is collected real-time print at the close of each bar.

For example, if the trading strategy or analysis technique is applied to a chart with 500
bars, and the trading strategy or analysis technique sends one line to the printer for
every bar on the chart, the first printout will consist of 500 lines, with as many lines
per page as each page can hold. Then, as data is collected real-time, one line will be
sent to the printer at the close of each bar (one line per page each time the bar closes).
The same holds true when sending the information to a file, and for all applications.

To send information to a file, the first expression included in parentheses of the
reserved word must be File along with the full path and name of the file enclosed in
quotation marks. For example, the following statement sends the EasyLanguage date,
time, and the close of every bar of a chart to a file instead of the printer:

Print(File(“c:\TradeStation\MyText.txt”),

Date, Time, Close);

Important: Every time the trading strategy, analysis technique, or function is
recalculated, or deleted and reapplied to the chart, the target file is overwritten. Also,
you cannot use a text string expression as the file name, it must be the actual path and
name of the file. Refer to the discussion of the reserved word FileAppend (below) for
information on appending to the file instead of overwriting it. When sending
information to the printer or a file, we recommend you use the FileAppend reserved
word instead of Print.

68 Output Methods CHAPTER 2
This reserved word creates and appends text string expressions to the specified file.
When sending information to a file, we recommend you use this reserved word instead
of Print.

Syntax:
FileAppend(“<FileName>”, Text);

<FileName> is a text string expression representing the full path and name of the file
to write to, and Text is a text string expression to append to the file.

This reserved word accepts a text string expression for the file name, it will not delete
the target file when the trading strategy or analysis technique is applied to the chart or
recalculated, it will not add a carriage return at the end of the expression sent to the
file, and finally, it only accepts text string expressions.

The fact that it will allow a text string expression as the file name enables users to
specify the file name to be written to through a variable and/or inputs. For example, the
following statements use the symbol name as a file name:

Variable: Txt(“ ”);

Txt = “c:\My Documents\” + GetSymbolName + “.txt”;

FileAppend(Txt, “This will be sent to a file”);

This reserved word provides an alternative to the Print statement that does not delete
the target file every time the trading strategy or analysis technique is applied or
recalculated. This target file grows until it is manually edited or deleted.

Note: You can use the reserved word FileDelete to delete the file and simulate the
behavior of the Print statement.

A carriage return is not added to the end of each expression sent; use the reserved word
NewLine whenever you want to include a carriage return. For example, the following
statement writes the text to the file, one line for each bar on the chart:

FileAppend(“c:\My Documents\text.txt”, “This text will be

 sent to a file” + NewLine);

Also, because this reserved word accepts only text string expressions, any dates or
numbers must be converted to text strings. For example, the following statement sends
the date and the closing price of every bar to the file:

FileAppend(“c:\My Documents\text.txt”,

ELDateToString(Date) + NumToStr(Close,2));

Notice that the date of the current bar is included, but as a parameter to the reserved
word ELDateToString, which converts an EasyLanguage date (YYYMMDD format) to

FileAppend

The Basic EasyLanguage Elements Drawing Text on Price Charts 69
a text string expression. Likewise, the closing price is included as the parameter for the
NumToStr reserved, which converts numbers to text string expressions.

Drawing Text on Price Charts
Another way to display information on screen is to write text on a price chart. The first con-
cept you need to understand to start working with text is that each instance of a text drawing
object on a chart, called a text object, has a distinct identification (ID) number. All
EasyLanguage reserved words use the ID number to refer to a specific text object.

You can draw text objects using trading strategies, analysis techniques (indicators and
studies) or functions, or by using the drawing object tool. When you use trading strategies,
analysis techniques, or functions to draw text objects, they are added to a chart using the
default size, color, and alignment of the Chart Analysis window. These attributes can be
modified using the EasyLanguage text object reserved words.

In order to place text on the chart, you need to define the specific point on the chart to
draw the text. You define the point by specifying a date and time (x-axis) and a price (y-
axis). This is the basic information that you manipulate when working with text objects;
additional information that you manipulate with the reserved words is the color, text
string, and alignment of the text.

All of the reserved words used to work with text objects return a numeric value repre-
senting the result of the operation they performed. If the reserved word was able to carry
out its task successfully, it will return a value of 0; however, if an error occurred, the re-
served word will return a numeric value representing the specific error. The following
table lists the possible return values of the text object reserved words.

Value Explanation
-2 The identification number used was invalid (i.e., there is no object on

the chart with this ID number).
-3 The data number (Data2, Data3, etc.) passed to the function was

invalid. There is no symbol (or data stream) on the chart with this data
number.

-4 The value passed to a SET function was invalid (for example, an invalid
color or line thickness was used).

-5 The beginning and ending points were the same (only when working
with trendlines). Can occur when you relocate a trendline or change
the begin/end points.

-6 The function was unable to load the default values for the tool.
-7 Unable to add the object. Possibly due to an out of memory condition.

Your system resources have been taxed and it cannot process the
request.

-8 Invalid pointer. Your system resources have been taxed and it cannot
process the request.

70 Drawing Text on Price Charts CHAPTER 2
Whenever any of the text object reserved words is unable to perform its task and returns
an error, the trading strategy, analysis technique, or function will stop manipulating all
text objects from that bar forward. The trading strategy, analysis technique, or function
itself will continue to be evaluated, but all statements that include text object reserved
words will return a value of -9 (Previous failure error) and will not perform the intended
action.

Also, it is very important that you store the ID number of the text objects drawn in the
price chart; if you have any intention of modifying or referring to this object in any way,
you need the ID number. If you are adding multiple text objects to the price chart, we
recommended you use arrays to store their ID numbers (refer to “Understanding Arrays”
on page 40 for information on using arrays).

Text Object Reserved Words
Following is the list of all the text object reserved words available in EasyLanguage.

This reserved word adds the specified text string to a price chart, at the specified bar and
price value. It returns a numeric expression corresponding to the ID number of the text
object added to the chart. If you want to modify the text object in any way, it is very
important that you capture and keep this number; the ID number is the only way of
referencing a specific text object.

Syntax:
Value1 = Text_New(BarDate, BarTime, Price, “MyText”)

Parameters:
BarDate and BarTime are numeric expressions corresponding to the date and time,
respectively, for the bar on which you want to anchor the text object, Price is a numeric
expression representing the price value at which to anchor the text object, and MyText is
the text string expression to add to the price chart.
All text objects are anchored at a specific bar and price value on the price chart. You need
to provide this information to the Text_New reserved word in order for the trading
strategy, analysis technique, or function to add a text object to the chart.
Notes:
Value1 is any numeric variable or array, and holds the ID number for the new text object.

-9 Previous failure. Once an object returns an error code, no additional
objects can be created by the trading strategy, analysis technique, or
function that generated the error.

-10 Too many trendline objects on the chart.
-11 Too many text objects on the chart.

Text_New

Value Explanation

The Basic EasyLanguage Elements Drawing Text on Price Charts 71
Text objects are added to the chart using the default color, and vertical and horizontal
alignment of the Chart Analysis window. As you will see, you can change any of these
properties using the reserved words listed in this section.

Example:
For example, the following statements add a text string “Key” to a price chart every time
there is a key reversal pattern:

Variable: ID(-1);

If Low < Low[1] AND Close > High[1] Then

 ID = Text_New(Date, Time, Low, “Key”);

This reserved word removes from the chart the text object with the ID number that matches
the one specified. It is important to remember that if an invalid ID number is used, the re-
served word will return a value of -2 and no additional operations will be performed on any
text objects by the trading strategy, analysis technique, or function that generated the error.
Syntax:
Value1 = Text_Delete(Text_ID)

Parameters:
Text_ID is a numeric expression representing the identification number of the text object to
delete.
Notes:
Value1 is any numeric variable or array. You must assign the text object reserved word to
a numeric variable or array in order to determine whether or not the reserved word per-
formed its operation successfully.
Example:
The following statements write the text string “Key” wherever there is a key reversal pat-
tern on the price chart, and delete old text from the chart as new key reversals are found:

Variables: OldKeyID(-1), ID(-1);

If Low < Low[1] AND Close > High[1] Then Begin

 OldKeyID = ID;

 ID = Text_New(Date, Time, Low, “Key”);

 If OldKeyID <> -1 Then

 Value1 = Text_Delete(OldKeyID);

End;

In the above example, we declare two variables to hold the Text IDs for the existing
and new text objects. When we find a new key reversal, we assign the ID number of
the current text object to the variable OldKeyID. We then create a new text object at the
new key reversal. Finally, we delete the text object with the ID number held in the
variable OldKeyID. We first check for OldKeyID to be -1, because it will be -1 until we

Text_Delete

72 Drawing Text on Price Charts CHAPTER 2
draw the second text object on the chart, and we don’t want to reference a text object
that doesn’t exist.

This reserved word returns a numeric expression corresponding to the color assigned to a
specified text object. It is important to remember that if an invalid ID number is used, it will
return a value of -2 and no additional operations will be performed on any text objects by
the trading strategy, analysis technique, or function that generated the error.
Syntax:
Value1 = Text_GetColor(Text_ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object for which to
obtain the color.
Notes:
Value1 is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

For a list of the supported colors, refer to Appendix B of this reference guide.

Example:
For example, the following statements write the text string “Key” wherever there is a key
reversal pattern on the price chart, and compares the color of the text object with the back-
ground of the price chart. If the colors match, the indicator draws the text string using a dif-
ferent color:

Variables: ID(-1), TxtColor(0);

If Low < Low[1] AND Close > High[1] Then Begin

 ID = Text_New(Date, Time, Low, “Key”);

 TxtColor = Text_GetColor(ID);

 If TxtColor = GetBackGroundColor Then

 Value1 = Text_SetColor(ID, TxtColor + 1);

End;

In the above example, we first declare two variables, one to hold the text object ID
number, the second to hold the number representing the color of the text object. Then,
when we find a key reversal, we draw the text object at the low of the bar. We also
obtain the color of the text object, and then compare the text object color to the color
of the chart background. If it is the same, we change the color of the text object (add
one to the existing color number).

Text_GetColor

The Basic EasyLanguage Elements Drawing Text on Price Charts 73
This reserved word returns a numeric expression corresponding to the EasyLanguage date
of the bar on which the specified text object is drawn. It is important to remember that if an
invalid ID number is used, it will return a value of -2 and no additional operations will be
performed on any text objects by the trading strategy, analysis technique, or function that
generated the error.

Syntax:
Value1 = Text_GetDate(Text_ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose date
you want to obtain.

Notes:
Value1 can be any numeric variable or array. The EasyLanguage date obtained is assigned
to this variable or array.

Example:
The following statement assigns to the variable Value1 the EasyLanguage date of the bar
where the text object with the ID number 5 is drawn:

Value1 = Text_GetDate(5);

You can draw text objects using trading strategies, analysis techniques (indicators and
studies) or functions, or by using the drawing object tool. EasyLanguage enables you to
search for text objects based on how they were created.

This reserved word returns the ID number of the oldest text object on the price chart (the
first drawn). It is important to remember that if an invalid ID number is used, the reserved
word will return a value of -2 and no additional operations will be performed on any text
objects by the trading strategy, analysis technique, or function that generated the error.

Syntax:
Value1 = Text_GetFirst(Num)

Parameters:
Num is a numeric expression representing the origin type of the text object. The possible
values for num are:

Text_GetDate

Text_GetFirst

74 Drawing Text on Price Charts CHAPTER 2
If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

Notes:
Value1 is any numeric variable or array that holds the ID number of the desired text object.

Example:
The following statements delete the oldest text object on a price chart drawn by a trading
strategy, analysis technique, or function:

Value1 = Text_GetFirst(1);

Value2 = Text_Delete(Value1);

Note: When the oldest (first) text object is deleted, the next oldest (second) text object
becomes the first drawn on the price chart, and so on.

A text object is always anchored to a specific bar. Because of this, there are three
possible ways to horizontally align a text object: to the left of the bar where it is drawn,
to the right, or centered. This reserved word returns a numeric value indicating the
horizontal alignment of the text object.

Syntax:
Value1 = Text_GetHStyle(Text_ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose
horizontal alignment value you want to obtain.

Notes:
Value1 is any numeric variable or array that holds the horizontal alignment of the
desired text object. The reserved word can return one of these three values:

Value of num Description
 1 Text created by a trading strategy, analysis technique, or function.
 2 Text created by the text drawing object tool only.
 3 Text created by either the text drawing object tool or a trading

strategy, analysis technique, or function.

Text_GetHStyle

Value Placement
 0 Left
 1 Right
 2 Centered

The Basic EasyLanguage Elements Drawing Text on Price Charts 75
Example:
The following instructions obtain the horizontal alignment of text object #10 and align
it to right of the bar:

If Text_GetHStyle(10) <> 1 Then

Value1 = Text_SetHStyle(1);

You can draw text objects using trading strategies, analysis techniques (indicators and
studies) or functions, or by using the drawing object tool. EasyLanguage enables you to
search for text objects based on how they were created.

The Chart Analysis window stores the chronological order of all text objects added to a
chart, and this information is made available to EasyLanguage. This reserved word returns
the ID number of the text object on the price chart added immediately after the text object
specified. You can use this reserved word together with the reserved word Text_GetFirst
to traverse all the text objects in a price chart.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects by
the trading strategy, analysis technique, or function that generated the error.

Syntax:
Value1 = Text_GetNext(Text_ID, Num)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object, and
Num is a numeric expression representing the origin type of the text object. The
possible values for Num are:

If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

Notes:
Value1 is any numeric variable or array, and holds the ID number of the text object added
after the text object specified.

Example:
The following statements set the color of all text objects in the chart to yellow:

Value1 = Text_GetFirst(3);

While Value1 <> -2 Begin

 Value2 = Text_SetColor(Value1, Yellow);

Text_GetNext

Value of num Description
 1 Text created by a trading strategy, analysis technique, or function.
 2 Text created by the text drawing object tool only.
 3 Text created by either the text drawing object tool or a trading strat-

egy, analysis technique, or function.

76 Drawing Text on Price Charts CHAPTER 2
 Value1 = Text_GetNext(Value1, 3);

End;

In the above example, we obtain the ID number for the first text object drawn on the
chart. Then, we set its color to yellow. We then obtain the ID number of the next text
object and set that to yellow. This loop continues until Text_GetNext returns -2,
indicating that there are no more text objects on the chart. Keep in mind that once the
trading strategy, analysis technique, or function returns -2, it cannot draw any more text
objects on the chart. In this situation, you may want to use one trading strategy, analysis
technique, or function to draw the text objects, and another to change their color.

This reserved word returns the text string expression corresponding to the text object
specified. It is important to remember that if an invalid ID number is used, the reserved
word will return a value of -2 and no additional operations will be performed on any text
objects by the trading strategy, analysis technique, or function that generated the error.

Syntax:
MyText = Text_GetString(Text_ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose text
string expression you want to obtain.

Notes:
MyText is any text variable or array, and holds the text string expression corresponding to
the text object with the ID number specified.

Example:
The following statements print the contents of text object #5 to the Print Log:

Variable: MyText (“ ”) ;

Print(Text_GetString(5));

This reserved word returns a numeric expression corresponding to the EasyLanguage time
of the bar on which the specified text object is anchored. It is important to remember that
if an invalid ID number is used, the reserved word will return a value of -2 and no additional
operations will be performed on any text objects by the trading strategy, analysis technique,
or function that generated the error.

Syntax:
Value1 = Text_GetTime(Text_ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object for which
you want to obtain the time.

Text_GetString

Text_GetTime

The Basic EasyLanguage Elements Drawing Text on Price Charts 77
Notes:
Value1 is any numeric variable or array, and holds the time of the specified text object.

Example:
The following statement assigns the EasyLanguage time of the bar where the text object
with the ID number 5 is drawn to the variable Value1 :

Value1 = Text_GetTime(5);

Text objects are drawn at a specific price value on the price chart. This reserved word
returns a numeric value corresponding to the price at which the specified text object is
anchored. It is important to remember that if an invalid ID number is used, the reserved
word will return a value of -2 and no additional operations will be performed on any text
objects by the trading strategy, analysis technique, or function that generated the error.

Syntax:
Value1 = Text_GetValue(Text_ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose
price value you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the price value at which the specified
object is anchored.

Example:
For example, the following statement can be used to print to the Print Log the value at
which text object 10 is drawn:

Print(Text_GetValue(10)) ;

A text object is always anchored at a specific price value on a price chart, and there are three
possible ways to align the text object vertically: the top being at the specified price, the
bottom being at the specified price, or centered. This reserved word returns a numeric value
representing the vertical alignment of the specified text object.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects by
the trading strategy, analysis technique, or function that generated the error.

Syntax:
Value1 = Text_GetVStyle(Text_ID)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose
vertical alignment you want to obtain.

Text_GetValue

Text_GetVStyle

78 Drawing Text on Price Charts CHAPTER 2
Notes:
Value1 can be any numeric variable or array, and holds the price value at which the
specified object is anchored.

This reserved word returns one of three values:

Example:
The following instruction sets the vertical alignment of text object #10 and to Bottom:

If Text_GetHStyle(10) <> 1 Then

 Value1 = Text_SetVStyle(1);

This reserved word sets the color of the specified text object.
Syntax:
Value1 = Text_SetColor(Text_ID, Color)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object, and Color
is an EasyLanguage color or its numeric equivalent.

For a list of the available colors, refer to Appendix B of this reference guide.
Notes:
Value1 is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following indicator displays the word “Key” wherever there is a key reversal pattern
on the price chart, and compares the color of the text object with the background of the price
chart. If the colors match, the indicator sets the text object to a different color (it adds 1 to
the current color):

Variables: ID(-1), TxtColor(0);

If Low < Low[1] AND Close > High[1] Then Begin

 ID = Text_New(Date, Time, Low, “Key”);

Value Placement
 0 Top
 1 Bottom
 2 Centered

Text_SetColor

The Basic EasyLanguage Elements Drawing Text on Price Charts 79
 TxtColor = Text_GetColor(ID);

 If TxtColor = GetBackgroundColor Then

 Value1 = Text_SetColor(ID, TxtColor + 1);

End;

All text objects are anchored at a specific bar and price value on the price chart. This
reserved word modifies the point at which the specified text object is anchored.

Syntax:
Value1 = Text_SetLocation(Text_ID, BarDate, BarTime, Price)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object to modify;
BarDate and BarTime are numeric expressions representing the new EasyLanguage date
and time, respectively, at which to anchor the text object; and Price is the new price value
at which to anchor the text object.
Notes:
Value1 is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects
by the trading strategy, analysis technique, or function that generated the error.

We recommend that you change the location of the text object rather than delete the
text object and draw a new one. Relocating an existing object is faster and generates
fewer ID numbers to keep track of.

Example:
These statements display the name of the symbol above the first bar in the chart (after Max-
BarsBack) and then change the location of the text to always display it on the last bar of the
chart:

If BarNumber = 1 Then

 Value1 = Text_New(Date, Time, High *1.01, GetSymbolName);

Value2 = Text_SetLocation(Value1, Date, Time, High * 1.01);

This reserved word changes the text string expression of the specified text object.
Syntax:
Value1 = Text_SetString(Text_ID, “MyText”)

Text_SetLocation

Text_SetString

80 Drawing Text on Price Charts CHAPTER 2
Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose text
string expression you want to modify, and MyText is the new text string expression for the
text object.
Notes:
Value1 is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any text objects
by the trading strategy, analysis technique, or function that generated the error.

We recommend that you change the text string expression of the text object rather than
delete the text object and draw a new one. Changing an existing text object is faster and
generates fewer ID numbers to keep track of.

Example:
These statements display the closing price of the symbol above the first bar in the chart (af-
ter MaxBarsBack) and then change the location of the text and the text to always display
the closing price of the last bar on the chart:

If BarNumber = 1 Then

Value1 = Text_New(Date, Time, High + 1, NumToStr(Close,2));

Value2 = Text_SetLocation(Value1, Date, Time, High + 1);

Value3 = Text_SetString(Value1, NumToStr(Close,2));

A text object is always anchored at a specific bar and price value. There are three horizontal
alignment settings: to the left of the bar where it is drawn, to the right, or centered. Also,
there are three vertical alignment settings: the top being at the specified price, the bottom
being at the specified price, or centered.

This reserved word changes the horizontal and vertical alignment of the specified text ob-
ject.
Syntax:
Value1 = Text_SetStyle(Text_ID, HVal, VVal)

Parameters:
Text_ID is a numeric expression representing the ID number of the text object whose
alignment you want to change, and HVal and VVal are numeric expressions
representing the horizontal and vertical alignment of the text object, respectively.

Text_SetStyle

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 81
You can use one of three horizontal alignment values (HVal):

You can use one of three vertical alignment values (VVal):

If there are no text objects with the ID number you specify, or if the operation fails in
any way, this reserved word will return a numeric expression corresponding to one of
the EasyLanguage drawing objects error codes, and no additional operations will be
performed on any text objects by the trading strategy, analysis technique, or function that
generated the error.

Notes:
Value1 is any numeric variable or array. You must assign the text object reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

Example:
The following statement changes the alignment of text object #3 so it is right aligned
and sits above the specified price:

Value1 = Text_SetStyle(3, 1, 1) ;

Drawing Trendlines on Price Charts
You can draw and manipulate trendlines on a price chart from a trading strategy, analysis
technique (indicators and studies) or function. The very first concept you need to under-
stand to start working with trendlines is that each instance of a trendline drawing object on
a chart has a distinct identification (ID) number. All EasyLanguage commands use the ID
number to refer to a specific trendline.

Trendlines are added to a chart using the default properties (i.e., color, thickness, line
style, extension status, and alert status) of the Chart Analysis window. You can modify
these attributes using the trendline-related reserved words.

To place a trendline on the chart, you need to define its start and end points. Each point
is defined using a date and time (x axis) and a price value (y axis). This is the basic
information that you manipulate when working with trendlines; additional information
that you manipulate using reserved words includes the color, thickness, and line style,
as well as extension and alert status.

Value Placement
 0 Left
 1 Right
 2 Centered

Value Placement
 0 Top
 1 Bottom
 2 Centered

82 Drawing Trendlines on Price Charts CHAPTER 2
All of the reserved words used to work with trendlines return a numeric value
representing the result of the operation they performed. If the reserved word was able
to carry out its task successfully, it will return a value of 0; however, if an error
occurred, the reserved word returns a numeric value representing the specific error. The
following table lists the possible return values of the trendline reserved words:

Whenever any of the trendline reserved words is unable to perform its task and returns
an error, the trading strategy, analysis technique, or function will stop manipulating all
trendlines from that bar forward. The trading strategy, analysis technique, or function
itself will continue to be evaluated, but all statements that include trendline reserved
words will return a value of -9 (Previous failure error) and will not perform the
intended action.

If you have any intention of modifying or referring to the trendline drawn in the price
chart in any way, you must store the ID number of the trendline. If you are adding
multiple trendlines to the price chart, we recommended you use arrays to store their ID
numbers.

Value Explanation
-2 The identification number used was invalid (i.e., there is no

object on the chart with this ID number).
-3 The data number (Data2, Data3, etc.) passed to the function

was invalid. There is no symbol (or data stream) on the chart
with this data number.

-4 The value passed to a SET function was invalid (for example,
an invalid color or line thickness was used).

-5 The beginning and ending points were the same (only when
working with trendlines). Can occur when you relocate a
trendline or change the begin/end points.

-6 The function was unable to load the default values for the tool.
-7 Unable to add the object. Possibly due to an out of memory

condition. Your system resources have been taxed and it
cannot process the request.

-8 Invalid pointer. Your system resources have been taxed and it
cannot process the request.

-9 Previous failure. Once an object returns an error code, no
additional objects can be created by the trading strategy,
analysis technique, or function that generated the error.

-10 Too many trendline objects on the chart.
-11 Too many text objects on the chart.

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 83
Trendline Reserved Words
Following is a list of all the trendline reserved words available in EasyLanguage.

This reserved word adds a trendline with the specified starting and ending points to a
price chart. It returns a numeric expression corresponding to the ID number of the
trendline added to the chart. If you want to modify the trendline in any way, it is very
important that you capture and keep the number; the ID number is the only way of
referencing a specific trendline.

Syntax:
Value1 = TL_New(iBarDate, iBarTime, iPrice, eBarDate,

eBarTime, ePrice)

Parameters:
iBarDate, iBarTime, and iPrice are numeric expressions corresponding to the date,
time, and price, respectively, of the starting point; eBarDate, eBarTime, and ePrice are
numeric expressions corresponding to the date, time, and price, respectively, of the end
point of the trendline.

Notes:
Value1 is any numeric variable or array, and holds the ID number for the new trendline.

A minimum of two different points are needed in order to draw any trendline on a price
chart, and this is the information that you need to provide to the TL_New reserved word
to draw a trendline on the price chart from a trading strategy, analysis technique, or
function.

Trendlines are added to the chart using the default properties set in TradeStation. As
you will see, you can change any of these properties using the reserved words listed in
this section.

For example, the following statements add a trendline to the price chart (and extend it to
the right) every time there is a key reversal pattern:

Variable: ID(-1);

If Low < Low[1] AND Close > High[1] Then Begin

 ID = TL_New(Date[1], Time[1], Low, Date, Time, Low);

 Value1 = TL_SetExtRight(ID, True);

End;

This reserved word deletes the specified trendline from the price chart.
Syntax:
Value1 = TL_Delete(Tl_ID)

TL_New

TL_Delete

84 Drawing Trendlines on Price Charts CHAPTER 2
Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline to delete.

Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal and extend it to the
right, and in addition, delete the old trendline from the chart when a new key reversal is
found:

Variables: OldKeyID(-1), ID(-1);

If Low < Low[1] AND Close > High[1] Then Begin

 OldKeyID = ID;

 ID = TL_New(Date[1], Time[1], Low, Date, Time, Low);

 Value1 = TL_SetExtRight(ID, True);

 If OldKeyID <> -1 Then

 Value1 = TL_Delete(OldKeyID);

End;

In the above example, first we declare two variables, one to hold the ID number of the
old trendline, and one to hold the ID number for the new trendline. When we find a new
key reversal, we store the existing trendline’s ID number in OldKeyID, and create a
new trendline at the low of the key reversal bar and extend it to the right. Then, we
delete the old trendline. Before deleting the old trendline, we first check to make sure
the ID number in OldKeyID is not -1, which it will be until the second trendline is
drawn. This way, we don’t reference an invalid ID number.

This reserved word obtains the alert setting for the specified trendline.
Syntax:
Value1 = TL_GetAlert(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose alert
status you want to obtain.

TL_GetAlert

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 85
Notes:
Value1 can be any numeric variable or array, and holds the alert status. This reserved word
returns one of these three values:

An alert set to Breakout on Close is triggered when on the previous bar, the close of the
symbol was lower than the trendline, and on the current bar, the close is higher than the
trendline. This type of alert is only evaluated once the bar is closed.

An alert set to Breakout Intrabar is triggered if the high crosses over the trendline or
if the low crosses under the trendline. This alert is triggered at the moment the trendline
is broken.

Example:
The following statement checks the alert status for trendline #10 and if it is not set to
Breakout on Close, it enables it and sets it to Breakout on Close:

If TL_GetAlert(10) <> 2 Then

 Value1 = TL_SetAlert(10, 2);

This reserved word returns the date of the starting point of the trendline. The start point
is the one with the earlier date. If the trendline is vertical, the lower of the two points
is considered to be the starting point.

Syntax:
Value1 = TL_GetBeginDate(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose start date
you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the date of the starting point.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement assigns the EasyLanguage date of the bar used as the start
point for the trendline with the ID number 5 to the variable Value1:

Value1 = TL_GetBeginDate(5);

Value Description
 0 None - no alert enabled
 1 Breakout Intrabar
 2 Breakout on Close

TL_GetBeginDate

86 Drawing Trendlines on Price Charts CHAPTER 2
This reserved word returns the time of the starting point of the trendline. The start point
is the one with the earlier date. If the trendline is vertical, the lower of the two points
is considered to be the starting point.

Syntax:
Value1 = TL_GetBeginTime(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose
starting time you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the time of the starting point.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement assigns the EasyLanguage time of the bar used as the start point
for the trendline with the ID number 5 to the variable Value1:

Value1 = TL_GetBeginTime(5);

This reserved word returns a numeric expression corresponding to the price value used
as the starting point of the trendline. The starting point of the trendline is the one with
the earlier date; if the trendline is vertical, the lower of the two points is considered to
be the starting point.

Syntax:
Value1 = TL_GetBeginVal(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose
starting price value you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the price value of the starting point
of the trendline.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

TL_GetBeginTime

TL_GetBeginVal

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 87
Example:
The following statement assigns the price value of the starting point of trendline #5 to the
variable Value1:

Value1 = TL_GetBeginVal(5);

This reserved word returns a numeric expression corresponding to the color assigned to the
specified trendline.
Syntax:
Value1 = TL_GetColor(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose color you
want to obtain.
Notes:
Value1 is any numeric variable or array, and holds the EasyLanguage color or numeric
equivalent of the specified trendline.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

For a list of supported colors, refer to Appendix B of this reference guide.

Example:
The following statements draw a trendline at the low of each key reversal pattern. If the col-
or of the trendline matches the background color of the chart, the indicator sets the trendline
to a different color (it adds 1 to the current color):

Variable: ID(-1);

If Low < Low[1] AND Close > High[1] Then Begin

 ID = TL_New(Date[1], Time[1], Low, Date, Time, Low);

 Value1 = TL_GetColor(ID);

 If Value1 = GetBackGroundColor Then

 Value2 = TL_SetColor(ID, Value1 + 1);

End;

This reserved word returns the date of the ending point of the trendline. The ending
point of the trendline is the one with the later date; if the trendline is vertical, the higher
of the two points is considered to be the ending point.

Syntax:
Value1 = TL_GetEndDate(Tl_ID)

TL_GetColor

TL_GetEndDate

88 Drawing Trendlines on Price Charts CHAPTER 2
Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose end date
you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the date of the starting point.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement assigns the EasyLanguage date of the bar used as the end point
for the trendline with the ID number 5 to the variable Value1:

Value1 = TL_GetEndDate(5);

This reserved word returns the time of the ending point of the trendline. The ending
point of the trendline is the one with the later date; if the trendline is vertical, the higher
of the two points is considered to be the ending point.

Syntax:
Value1 = TL_GetEndTime(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose
ending time you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the time of the ending point.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement assigns the EasyLanguage time of the bar used as the end point for
the trendline with the ID number 5 to the variable Value1:

Value1 = TL_GetEndTime(5);

This reserved word returns a numeric expression corresponding to the price value used
as the ending point of the trendline. The ending point of the trendline is the one with
the later date; if the trendline is vertical, the higher of the two points is considered to
be the ending point.

Syntax:
Value1 = TL_GetEndVal(Tl_ID)

TL_GetEndTime

TL_GetEndVal

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 89
Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose
ending price value you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the price value of the ending point
of the trendline.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement assigns the price value of the ending point of trendline #5 to the
variable Value1:

Value1 = TL_GetEndVal(5);

Trendlines can be extended to the right or left. This reserved word returns a value of True
or False. If the trendline is extended to the left, it will return a value of True; otherwise, it
will return a value of False.
Syntax:
Condition1 = TL_GetExtLeft(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose extension
status you want to obtain.
Notes:
Condition1 can be any true/false variable or array, and holds the true/false value determin-
ing whether or not the trendline is extended. If an invalid ID number is used, the value False
is returned.
Example:
The following instructions extend the trendline #10 to the left if it is not already extended:

If TL_GetExtLeft(10) = False Then

 Value1 = TL_SetExtLeft(10, True);

Trendlines can be extended to the right or left. This reserved word returns a value of True
or False. If the trendline is extended to the right, it will return a value of True; otherwise, it
will return a value of False.
Syntax:
Condition1 = TL_GetExtRight(Tl_ID);

TL_GetExtLeft

TL_GetExtRight

90 Drawing Trendlines on Price Charts CHAPTER 2
Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose extension
status you want to obtain.

Notes:
Condition1 can be any true/false variable or array, and holds the true/false value determin-
ing whether or not the trendline is extended. If an invalid ID number is used, the value False
is returned.

Example:
The following instructions extend the trendline #10 to the right if it is not already extended:

If TL_GetExtRight(10) = False Then

 Value1 = TL_SetExtRight(10, True);

You can draw trendlines using trading strategies, analysis techniques (indicators and
studies) or functions, or by using the drawing object tool. EasyLanguage enables you to
search for trendlines based on how and in what order they were created.

The Chart Analysis window stores the chronological order of all trendlines added to a chart,
and this information is made available to EasyLanguage. This reserved word returns the ID
number of the first trendline added to the price chart (by a trading strategy, analysis
technique, or function, or by a drawing tool, or by either).

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines by the
trading strategy, analysis technique, or function that generated the error.

Syntax:
Value1 = TL_GetFirst(Num)

Parameters:
Num is a numeric expression representing the origin type of the trendline. The possible
values for Num are:

If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

Notes:
Value1 is any numeric variable or array that holds the ID number of the desired trendline.

TL_GetFirst

Value of Num Description
 1 Trendline created by a trading strategy, analysis technique, or func-

tion.
 2 Trendline created by the trendline drawing object tool only.
 3 Trendline created by either the trendline drawing object tool or a trad-

ing strategy, analysis technique, or function.

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 91
Example:
The following statements delete the oldest trendline on a price chart drawn by a trading
strategy, analysis technique, or function:

Value1 = TL_GetFirst(1);

Value2 = TL_Delete(Value1);

Note: When the oldest (first) trendline is deleted, the next oldest (second) trendline
becomes the first drawn on the price chart, and so on.

You can draw trendlines using trading strategies, analysis techniques (indicators or
studies), or functions, or by using the drawing object tool. EasyLanguage enables you to
search for trendlines based on how they were created.

The Chart Analysis window stores the chronological order of all trendlines added to a chart,
and this information is made available to EasyLanguage. This reserved word returns the ID
number of the trendline on the price chart added immediately after the trendline specified.
You can use this reserved word together with the reserved word TL_GetFirst to traverse all
the trendlines in a price chart.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines by the
trading strategy, analysis technique, or function that generated the error.

Syntax:
Value1 = TL_GetNext(TL_ID, Num)

Parameters:
TL_ID is a numeric expression representing the ID number of the trendline, and Num
is a numeric expression representing the origin type of the trendline. The possible
values for Num are:

If a value different than 1, 2, or 3 is used, EasyLanguage will assume a value of 3.

Notes:
Value1 is any numeric variable or array, and holds the ID number of the trendline added
after the trendline specified.

TL_GetNext

Value of Num Description
 1 Trendline created by a trading strategy, analysis technique, or func-

tion.
 2 Trendline created by the trendline drawing object tool only.
 3 Trendline created by either the trendline drawing object tool or a trad-

ing strategy, analysis technique, or function.

92 Drawing Trendlines on Price Charts CHAPTER 2
Example:
The following statements set the color of all trendlines in the chart to yellow:

Value1 = TL_GetFirst(3);

While Value1 <> -2 Begin

 Value2 = TL_SetColor(Value1, Yellow);

 Value1 = TL_GetNext(Value1, 3);

End;

In the above example, we obtain the ID number for the first trendline drawn on the
chart. Then, we set its color to yellow. We then obtain the ID number of the next
trendline and set that to yellow. This loop continues until TL_GetNext returns -2
indicating that there are no more trendlines on the chart. Keep in mind that once the
trading strategy, analysis technique, or function returns -2, it cannot draw any more
trendline on the chart. In this situation, you may want to use one trading strategy,
analysis technique, or function to draw the trendlines, and another to change their
color.

This reserved word returns a numeric expression representing the thickness of the
trendline, where 0 is the thinnest, and 6 is the thickest.

Syntax:
Value1 = TL_GetSize(Tl_ID)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose thickness
setting you want to obtain.

Notes:
Value1 can be any numeric variable or array, and holds the thickness setting.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines by the
trading strategy, analysis technique, or function that generated the error.

Example:
The following statement assigns the thickness of trendline #10 to the variable Value1:

Value1 = TL_GetSize(10);

This reserved word returns a numeric expression representing the line style used for the
specified trendline.

Syntax:
Value1 = TL_GetStyle(Tl_ID)

TL_GetSize

TL_GetStyle

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 93
Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose line style
you want to obtain.

Notes:
Value1 is any numeric variable or array, and holds the numeric expression representing
the line style of the specified trendline. Following are the possible return values and
their numeric equivalents:

You can use either the numbers or the EasyLanguage reserved word.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following IF-THEN statement verifies that a trendline is solid before executing the
EasyLanguage instruction:

If TL_GetStyle(10) = Tool_Solid Then

{EasyLanguage instruction } ;

This reserved word returns a numeric expression corresponding to the value of a trendline
at a specific bar. It is important to remember that this reserved word returns a value even if
the trendline is not shown on or projected through the bar specified. For example, if a
trendline is drawn from December 1st to January 5th, and the following statement is used:

Value1 = TL_GetValue(10, 990203, 1400);

Even though the date specified is in February, the TL_GetValue reserved word will return
the trendline value as if the trendline were extended to that particular bar (along the same
slope).

Syntax:
Value1 = TL_GetValue(Tl_ID, TLDate, TLTime)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose price
value you want to obtain. TLDate and TLTime are the date and time, respectively, of the bar
for which you want to obtain the trendline’s value.

TL_GetValue

Tool_Solid 1
Tool_Dashed 2
Tool_Dotted 3
Tool_Dashed2 4
Tool_Dashed3 5

94 Drawing Trendlines on Price Charts CHAPTER 2
Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement triggers an alert when the close crosses over trendline #10:

If Close Crosses Over TL_GetValue(10, Date, Time) Then

Alert(“Trendline is broken”);

This reserved word changes the alert status for a trendline.
Syntax:
Value1 = TL_SetAlert(Tl_ID, AlertVal)

Parameters:
Tl_ID is a numeric expression representing the identification number of the trendline, and
AlertVal is a numeric expression representing the alert setting for the trendline. You can
specify one of these three values:

An alert set to Breakout on Close is triggered when on the previous bar, the close of the
symbol was lower than the trendline, and on the current bar, the close is higher than the
trendline or vice-versa. This type of alert is only evaluated once the bar is closed.

An alert set to Breakout Intrabar is triggered if the high crosses over the trendline or
if the low crosses under the trendline. This alert is triggered at the moment the trendline
is broken.

Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

TL_SetAlert

Value Description
 0 None - no alert enabled
 1 Breakout Intrabar
 2 Breakout on Close

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 95
Example:
The following statement checks the alert status for trendline #10 and if it is not set to Brea-
kout on Close, it enables it and sets it to Breakout on Close:

If TL_GetAlert(10) <> 2 Then

 Value1 = TL_SetAlert(10, 2);

This reserved word changes the start point of the specified trendline. It is very important to
know which is the starting point and which is the ending point for a trendline; the start point
has an earlier date and time. If the trendline is vertical, the point with the lower price value
is considered the starting point.

However, if the starting point of a trendline is changed (by EasyLanguage or by using the
drawing tool) such that it has a later date than the ending point, the starting point then
becomes the old ending point of the trendline.

Syntax:
Value1 = TL_SetBegin(Tl_ID, iDate, iTime, iVal)

Parameters:
Tl_ID is a numeric expression representing the identification number of the trendline, and
iDate, iTime, and iVal are numeric expressions representing the trendline’s starting point
date, time, and value respectively.

Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

This reserved word returns zero (0) when it successfully changes the beginning point of a
trendline, and it returns one of the EasyLanguage drawing object errors when it fails. For
example, if the start point of the trendline is set to exactly the same value as the ending
point, the reserved word will return the error -5. Also, it is important to remember that if an
invalid ID number is used, the reserved word will return a value of -2, and no additional
operations will be performed on any trendlines by the trading strategy, analysis technique,
or function that generated the error.

Example:
The following statement sets the start point of trendline #5 to the high price 10 bars ago:

Value1 = TL_SetBegin(5, Date[10], Time[10], High[10]);

This reserved word changes the color of the specified trendline.
Syntax:
Value1 = TL_SetColor(Tl_ID, Color)

TL_SetBegin

TL_SetColor

96 Drawing Trendlines on Price Charts CHAPTER 2
Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose color you
want to change, and Color is one of the EasyLanguage supported colors.

For a list of supported colors, refer to Appendix B of this reference guide.
Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal, and compare the
color of the trendline with the background of the chart. If the colors match, the
EasyLanguage instructions add 1 to the color, and set the trendline to this new color:

Variables: ID(-1), TLColor(0);

If Low < Low[1] AND Close > High[1] Then Begin
 ID = TL_New(Date[1], Time[1], Low, Date, Time, Low);
 TLColor = TL_GetColor(ID);
 If TLColor = GetBackgroundColor Then
 Value1 = TL_SetColor(ID, TxtColor+1);
End;

This reserved word changes the end point of the specified trendline. It is very important to
know which is the starting point and which is the ending point for a trendline; the end point
has a later date and time. If the trendline is vertical, the point with the higher price value is
considered the ending point.

However, if the ending point of a trendline is changed (by EasyLanguage or by using the
drawing tool) such that it has an earlier date than the starting point, the ending point then
becomes the original starting point of the trendline.

Syntax:
Value1 = TL_SetEnd(Tl_ID, eDate, eTime, eVal)

Parameters:
Tl_ID is a numeric expression representing the identification number of the trendline, and
eDate, eTime, and eVal are numeric expressions representing the trendline’s new ending
point date, time, and price value, respectively.

Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

TL_SetEnd

The Basic EasyLanguage Elements Drawing Trendlines on Price Charts 97
This reserved word returns zero (0) when it successfully changes the end point of a
trendline, and one of the EasyLanguage drawing object errors when it fails. For example,
if the end point of the trendline is set to exactly the same value of the start point, the
reserved word will return an error -5. Also, it is important to remember that if an invalid ID
number is used, the reserved word will return a value of -2 and no additional operations will
be performed on any trendlines by the trading strategy, analysis technique, or function that
generated the error.

Example:
The following statement sets the end point of trendline #5 to the current bar’s high price:

Value1 = TL_SetEnd(5, Date, Time, High);

Trendlines can be extended to the left or right. This reserved word enables you to toggle the
trendline between extended to the left and not extended.

Syntax:
Value1 = TL_SetExtLeft(Tl_ID, Extend)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline, and Extend is a
true/false expression that either extends the trendline to the left or not.
Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal bar and extend it to
the right:

Variable: ID(-1);

If Low < Low[1] AND Close > High[1] Then Begin
 ID = TL_New(Date[1], Time[1], Low, Date, Time, Low);
 Value1 = TL_SetExtRight(ID, True);
End;

Trendlines can be extended to the left or right. This reserved word enables you to toggle the
trendline between extended to the right and not extended.

Syntax:
Value1 = TL_SetExtRight(Tl_ID, Extend)

TL_SetExtLeft

TL_SetExtRight

98 Drawing Trendlines on Price Charts CHAPTER 2
Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline, and Extend is a
true/false expression that either extends the trendline to the right or not.

Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statements draw a trendline at the low of a key reversal bar and extend it to
the left and right:

Variable: ID(-1);

If Low < Low[1] AND Close > High[1] Then Begin
 ID = TL_New(Date[1], Time[1], Low, Date, Time, Low);
 Value1 = TL_SetExtRight(ID, True);
 Value1 = TL_SetExtLeft(ID, True);
End;

This reserved word changes the thickness of the specified trendline. Zero (0) is the
thinnest and six (6) is the thickest setting.

Syntax:
Value1 = TL_SetSize(Tl_ID, Num)

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline, and Num is a
numeric expression representing the thickness of the trendline, 0 - 6.

Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement sets the line style of trendline #10 to the thinnest line style
setting:

Value1 = TL_SetSize(10, 0);

TL_SetSize

The Basic EasyLanguage Elements Multimedia and EasyLanguage 99
This reserved word enables you to modify the style of the specified trendline.

Syntax:
Value1 = TL_SetStyle(Tl_ID, Style);

Parameters:
Tl_ID is a numeric expression representing the ID number of the trendline whose style you
want to change, and Style is a numeric expression representing the new line style for the
trendline.

The possible styles are:

You can use either the number or the reserved word. The style only applies when the
trendline is set to the thinnest size, which is zero (0).

Notes:
Value1 is any numeric variable or array. You must assign the trendline reserved word
to a numeric variable or array so that you can determine whether or not the reserved
word performed its operation successfully.

It is important to remember that if an invalid ID number is used, the reserved word will
return a value of -2 and no additional operations will be performed on any trendlines
by the trading strategy, analysis technique, or function that generated the error.

Example:
The following statement changes the line style of trendline #10 to a dotted line:

Value1 = TL_SetStyle(10, Tool_dotted);

Multimedia and EasyLanguage
You can include a sound (.wav) file or a video file (.avi) in any of your trading strategies,
analysis techniques, or functions. Common uses of audio and video include alerts and
commentary. You can write your analysis techniques such that when an alert is triggered,
a video and/or a sound file is played.

The reserved words you use to include sound and video files are described next.

TL_SetStyle

Tool_Solid 1
Tool_Dashed 2
Tool_Dotted 3
Tool_Dashed2 4
Tool_Dashed3 5

100 Multimedia and EasyLanguage CHAPTER 2
Playing Sound Files
There is only one reserved word you use to play sounds; it is described below.

This reserved word finds and plays the specified sound file (.wav file). This reserved
word returns a value of True if it was able to find and play the sound file, and it returns
a value of False if it is not able to find or play it.

Syntax:
Condition1 = PlaySound(FileName);

Parameters:
Condition1 is any true/false variable or array, and FileName is any text string expression
that represents the full path and file name of the sound file to be played. Only .wav files
can be played.

Notes:
We recommended that you use this reserved word only on the last bar of the chart or on
bars where the commentary is obtained. Otherwise, you may find that the .wav file is
played more often than you intended. For example, if your intention is to play a .wav file
whenever a certain bar pattern occurs, and this pattern occurs 50 times in the price chart,
the trading strategy, analysis technique, or function will play the .wav file 50 times when
it is applied to the price chart. Also, the .wav file is only played once per bar, even if the
event occurs more than once intrabar (unless the Update on every tick option is enabled,
in which case, the .wav file will play with each new tick while the event is True).

Example:
The following statements play the sound file Ding.wav when there is a key reversal
pattern on the last bar of the chart:

If LastBarOnChart AND Low < Low[1] AND Close > High[1] Then

 Condition1 = PlaySound("c:\windows\sounds\ding.wav");

Playing Video Files
You can play a video file (.avi file) using a combination of three reserved words.

EasyLanguage allows you to build video clips out of many different .avi files, and it
allows you to mix and match video clips at will.

First, you obtain a video clip ID number for each video clip that you will be using in your
trading strategy, analysis technique, or function, then you specify what .avi files will make
up that video clip. You can play the resulting video clip at any time.

The three reserved words necessary to create video clips are described next.

PlaySound

The Basic EasyLanguage Elements Multimedia and EasyLanguage 101

This reserved word creates a new video clip and returns a numeric value representing the
ID number of the new video clip created.

Syntax:
Value1 = MakeNewMovieRef;

Parameters:
Value1 is any numeric variable or array.

Notes:
Once you create the video clip using this reserved word, you can add one or more .avi
files to it using the reserved word AddToMovieChain. You must save the ID number of
the video clip as it will be the way to reference the video clip in order to add .avi files as
well as play it.

Example:
The following statement creates a new video clip and assigns the ID number to the
variable Value1:

Value1 = MakeNewMovieRef;

This reserved word adds .avi files to an existing video clip and returns a true/false value
representing the success of the operation. If the reserved word was able to add the .avi
file to the video clip, it returns a value of True; if it was not, it returns a value of False.

Syntax:
Condition1 = AddToMovieChain(Movie_ID, File);

Parameters:
Condition1 is any true/false variable or array, Movie_ID is a numeric expression
representing the ID number of the video clip to which you’re adding the .avi file, and File
is a text string expression representing the full path and file name of the .avi file to add
to the video clip.

Notes:
When a video clip is played, it will play all the .avi files in the order they were added to
the video clip.

Example:
The following statements create a video clip and add two .avi files to it:

Variable: ID(-1);

ID = MakeNewMovieRef ;

Condition1 = AddToMovieChain(ID, “c:\MyMovie.avi”);

Condition2 = AddToMovieChain(ID, “c:\MyOtherMovie.avi”);

MakeNewMovieRef

AddToMovieChain

102 Multimedia and EasyLanguage CHAPTER 2
This reserved word plays a video clip and returns a true/false expression representing the
success of the operation. If the reserved word was able to play the video clip, it returns a
value of True, if it was not, it returns a value of False.

Syntax:
Condition1 = PlayMovieChain(Movie_ID);

Parameters:
Condition1 is any true/false variable or array, Movie_ID is a numeric expression represent-
ing the ID number of the video clip.
Notes:
Once you have created a video clip using the reserved word MakeNewMovieRef and added
.avi files to the video clip, you are ready to play it. We recommend you use the reserved
word PlayMovieChain only on the last bar of the chart or on bars where the commentary
is obtained (using the AtCommentaryBar or LastBarOnChart reserved words).
Otherwise, you may find that the video clip is played more often than you need it to.

If your intention is to play the video clip when a certain bar pattern occurs, and this
pattern occurs 50 times the price chart, the trading strategy, analysis technique, or function
will play the video clip 50 times when applied to the price chart.

Example:
The following statements create and play a video clip on the bar where commentary is
obtained:

Variable: ID(-1);

If BarNumber = 1 Then Begin

ID = MakeNewMovieRef;

Condition1 = AddToMovieChain(ID, “c:\MyMovie.avi”);

Condition2 = AddToMovieChain(ID, “c:\MyOtherMovie.avi”);

End;

If AtCommentaryBar Then

 Condition1 = PlayMovieChain(ID);

Notice that the video clip is created and the video files are added to it only once by
using an IF-THEN statement to check for the first bar of the chart. If we don’t use this
IF-THEN statement, the indicator will create as many video clips as there are bars in
the chart.

Note: You can also use the reserved word LastBarOnChart instead of
AtCommentaryBar.

PlayMovieChain

C H A P T E R 3

EasyLanguage for TradeStation 6
This chapter covers EasyLanguage specifically for use with TradeStation. You will be
introduced to the syntax for writing Strategies as well as the Trading Strategy Testing
Engine, which is the engine that performs the backtesting and automation of your
Strategies. This chapter also describes the reserved words for use with indicators and
studies (ShowMe, PaintBar, ActivityBar, and ProbabilityMap) when working with
TradeStation.

In This Chapter

Writing Strategies................................. 104

The Trading Strategy Testing Engine .. 105

Order Placement 119

Understanding Built-in Stops 132

Writing Indicators and Studies............. 136

Writing ShowMe and PaintBar Studies 140

Writing ProbabilityMap Studies 145

Writing ActivityBar Studies................. 153

104 Writing Strategies CHAPTER 3
Writing Strategies
EasyLanguage enables you to express your trading ideas very specifically using
TradeStation Strategies. An example of a statement within a Strategy is:

Buy 100 Shares Next Bar at Market;

The statements used to create entires and exits have two parts, which are very similar
to the language you would use to communicate with your broker. The first part of the
statement is the trading order, which is a description of the action you want to perform;
for example, buy 100 shares. The second part of the statement is the execution method,
which is exactly how (when and at what price) the order should be carried out; for
example, next bar at market.

There are four reserved words you can use to express your trading ideas when writing
Strategies. We refer to these words as trading verbs, and these are:

Each one of these orders can have four different execution methods:

... this bar on close

... next bar at market

... next bar at price Stop

... next bar at price Limit

As with all other EasyLanguage statements, the statements created using these trading
verbs are evaluated at the end of every bar, at which point an order is placed.

When an order is executed this bar on close (i.e., at the close of the current bar), it is exe-
cuted immediately when the bar is closed. If it is specified as a next bar at market order, it
is executed at the opening price of the next bar. Stop and limit orders are left as open orders
that remain active throughout the next bar, until the price specified is met or the bar is
closed (completed).

Depending on the trading verb used, stop and limit orders translate into or higher or or low-
er than the specified price. The statement Buy next bar at 100 limit opens a long position
during the next bar at the first price available at or under 100. Similarly, the statement
BuyToCover next bar at 50 stop closes a short position during the next bar at the first traded
price at or over 50. It is possible for stop and limit orders not to be filled (i.e., price never
reached); in this case, the orders are canceled at the close of the bar.

Figure 3-1. Order Types

Order Type Description

Buy Cover all short positions and initiate a long position

Sell Close a long position

SellShort Cover all long positions and initiate a short position

BuyToCover Close a short position

EasyLanguage for TradeStation 6 The Trading Strategy Testing Engine 105

Figure 3-2 shows the meaning of the different orders.

Each component of a trading order is discussed in the section “Order Placement” on
page 119.

The Trading Strategy Testing Engine
To reproduce as accurately as possible how a Strategy would have performed in the past,
and to keep track of your trading rules as new data is collected, TradeStation uses a power-
ful Trading Strategy Testing Engine. This engine takes all the orders generated by the
Strategy applied to the chart and creates the Strategy Performance Report.

This section covers all the different procedures that the Trading Strategy Testing Engine
uses, and the assumptions it makes in order to evaluate the trading strategy applied to a
chart.

The Trading Strategy Testing Engine performs two functions, backtesting and automation.
Backtesting is the process of analyzing historical data and deriving historical profitability
results, and automation is the process of monitoring and analyzing new data as it is ob-
tained. This section describes each process in detail.

Overview
Once you create a price chart and apply a Strategy to it, TradeStation evaluates all the Strat-
egy rules for the very first (oldest) bar on the chart—as it does with all EasyLanguage pro-
cedures—and generates the trading orders (to enter or exit) to be executed either at the close
of that first bar or on the next bar.

Once TradeStation evaluates all instructions for the first bar on the chart, it reads the second
bar of data and evaluates any orders that were left active from the first bar with the prices
of the second bar, looking for possible fills. If set to use a finer data resolution, TradeStation
can review the price behavior at an interval more precise than the bar interval of the chart,
and determine the price at which the orders would have been filled, or if they would have
been filled at all. If TradeStation is not set to use a finer data resolution, TradeStation sim-
ulates the fill prices using several market assumptions explained later in this section.

Once the Trading Strategy Testing Engine is done evaluating the orders that were active
through the second bar, TradeStation returns to the EasyLanguage instructions that com-
pose the Strategy and generates the necessary orders for the close of the second bar and

Figure 3-2. Stop and Limit orders

Order Type Stop Limit

Buy or Higher or Lower

Sell or Lower or Higher

SellShort or Lower or Higher

BuyToCover or Higher or Lower

106 The Trading Strategy Testing Engine CHAPTER 3
places those for the third bar. This process, called backtesting, is repeated on every bar until
the last bar on the chart is reached (the most recent bar). The results of each trade are stored
and are presented in a variety of ways in the Strategy Performance Report.

The second part of the process is the automation of new orders. Backtesting takes a few sec-
onds to complete, at which point, TradeStation begins to evaluate the new data as it is re-
ceived. TradeStation also monitors any outstanding orders remaining from the backtesting
process. When each new bar is completed, TradeStation evaluates the EasyLanguage in-
structions of the Strategy for this new bar, and places any orders for the close of the current
bar and/or the next bar. This process is repeated on every new bar until the Strategy is de-
leted from the chart or the workspace is closed.

Automation and backtesting are discussed in detail next.

Automation
Automation is the process of monitoring new data for the symbol to which the Strategy is
applied. The rules followed by the Trading Strategy Testing Engine to evaluate the Strategy
orders are described next.

Price at Which Orders are Placed and Filled
The very first thing TradeStation does to any order it receives from a Strategy is verify
that the order has a valid price for the instrument to which it is applied.

A valid price is any price that has a valid decimal value compared to the settings of the
charted symbol. The settings are the price scale and the minimum movement.

If the price scale of a given symbol is 1/100, and the minimum movement is 10, then
this symbol only trades in 10ths of a point; therefore, 100.1, 950.5 and 10,000.7 are
valid prices whereas 95.125 is not.

If the order being processed is an or higher order, the price is rounded up to the nearest
valid trading price. If it is an or lower order, the price is rounded down to the nearest
price. Figure 3-3 describes how orders are interpreted by the Trading Strategy Testing
Engine.

To continue with the above example, in which the price scale is 1/100 and the minimum
movement is 10, if an order to Buy at 100.125 limit is placed, this order will be placed in
TradeStation as an order to Buy at 100.1 or anything lower. If an order is placed to Buy
at 100.125 stop, this order will be placed as Buy at 100.2 or higher.

Figure 3-3. Stop and Limit orders

Trading Verb Stop Limit

Buy or Higher or Lower

Sell or Lower or Higher

SellShort or Lower or Higher

BuyToCover or Higher or Lower

EasyLanguage for TradeStation 6 The Trading Strategy Testing Engine 107
This rounding is essential because if an order is received to buy at 100.125 or higher, it
means that you do not want to buy at 100.124, or at 100.120, or much less at 100.1
because the order stated ‘100.125 or higher’; therefore, the only alternative is to round
up to the nearest valid trading price. The opposite is done for or lower orders for the same
reason.

Determining Which Order to Fill
A Strategy can place multiple orders (Buy, Sel, SellShort, BuyToCover) for any single
bar. Each order can use the same or a different execution method. When two or more
orders are placed at the same time, the Trading Strategy Testing Engine determines
which order to fill based on the execution method:

Rule 1: Orders on Close and Next Bar at Market
Orders that are placed to be filled this bar on close have the highest priority, once all
these orders have been filled, the next bar at market orders are evaluated. If there is more
than one order with the same execution method (e.g., three orders for "this bar on close"),
then the order that was placed first in the Strategy takes priority and is filled first. This
works bothfor multiple orders in one Strategy, or when multiple Strategies are applied to
the same Chart Analysis window.

For example, assume your Strategy generates an order that will enter a long position next
bar at market based on a moving average crossover, and a second order that will enter a
short position next bar at market based on a candlestick pattern. If both conditions are
met on the same bar, the Strategy will issue orders to enter both a short and long position.
The order listed first is executed first, and the order listed second is executed immediately
after.

If the Buy order is listed first, the Strategy will display a long entry and then a short entry,
ending that bar with a short position open. However, if the SellShort order is listed first,
the Strategy will enter short first, long second, and end the bar with a long position.

If in our example both entries were long entry orders, the first order listed would be filled
and the second would not.

Note: It is possible to enable pyramiding for a Strategy, in which case multiple entries
in the same direction can be filled. The rules used to process orders for Strategies that
allow pyramiding are explained on page 110.

When there are multiple Strategies applied to a Chart Analysis window that place the
same type of order, then the orders from the Strategy that is listed first in the Format
Strategy dialog box is given priority (Figure 3-4). You can rearrange Strategies using the
Move Up and Move Down buttons.

108 The Trading Strategy Testing Engine CHAPTER 3

To summarize this rule: this bar on close orders are evaluated first, then next bar at
market orders. If there are multiple orders of the same type, the orders that appear first in
the PowerEditor Strategy document are evaluated first, and the rest are ignored (unless
pyramiding is allowed). Furthermore, if there is more than one Strategy applied to the
Chart Analysis window, then the orders that come from the Strategy that is listed first in
the Format Strategy dialog box have a higher priority.

As shown in Figure 3-5, if Strategy A is listed first in the Format Strategy dialog box
then Order A1 will be executed and the rest ignored; whereas if Strategy B is listed first,
then Order B1 will be filled.

Figure 3-4. Strategies in the Format Strategy dialog. Strategies can be moved up or down to specify the order in
which they are read by the engine.

Figure 3-5. Order Priorities when using multiple Strategies

EasyLanguage for TradeStation 6 The Trading Strategy Testing Engine 109
Rule 2: Stop and Limit Orders
Once all market orders are evaluated, the Trading Strategy Testing Engine analyzes stop
and limit orders. If there are multiple stop or limit orders, the Trading Strategy Testing
Engine gives a higher priority to the order that is closest to the market (closest to the
current price).

This is done in order to simulate how stop and limit orders are actually filled. If a symbol
is trading at 950, and there are two limit orders to buy—one at 949 and one at 948—as
the market drops, the order to buy at 949 would be filled first, and the order to buy at 948
would be filled second. Therefore, the TradeStation Strategy Engine fills these orders in
that way, producing results are as realistic as possible.

As another example, assume there are three (or more) different orders to buy at a limit
price (e.g., buy 100 shares at 101 limit, buy 300 shares at 98 limit, and buy 500 shares at
95 limit). In this case, when pyramiding is disabled, TradeStation only displays the order
to buy 100 shares at 101 limit, which is closest to the market. If pyramiding is enabled,
then all three orders are shown, and the orders that are closest to the market are filled first.

To summarize this rule: if the stop or limit orders are an “or higher” order, TradeStation
gives a higher priority when filling orders to the order with the lowest price target. If the
stop or limit orders are “or lower,” TradeStation gives a higher priority when filling
orders to the highest price target.

Determining the Number of Shares when Opening Positions
When formatting Strategies, under the Trade size section of the General tab (Figure 3-
6) there is an option to specify the default number of shares (or contracts) that the
Strategy will use when opening a position. This number is used unless the Strategy’s
entry or exit order specifies the number of shares/contracts to buy, sell short or close
out (as discussed in the section, “Order Placement” on page 119). When the order

Advanced Tips: ‘Acceptable Orders’
Although many brokers will not accept buy stop or sellshort limit orders below the market
or buy limit or sellshort stop orders above the market, TradeStation will accept these
orders and fill them on the next bar at the first available price, which will usually be the
open of the bar. For example, if the market is trading at 950 and the Strategy places an
order to buy at 1,000 limit, TradeStation will fill this order during the next bar at the first
price under 1,000, which will probably be the open of the next bar.

110 The Trading Strategy Testing Engine CHAPTER 3
specifies the number of shares/contracts, it will override the setting under the Trade
size section.

Once it has determined the number of shares/contracts, the Trading Strategy Testing En-
gine will look at the setting under the Position limits section labeled Maximum shares/
contracts per position (shown in Figure 3-7). If necessary, the number of contracts/shares
of any orders are adjusted so that the total number of contracts/shares in an open position
does not exceed the number specified in this option.

If there is no open position, and a Strategy places an order to buy 5,500 shares, and the num-
ber entered under the Maximum shares/contracts per position box is 5,000, the Trading
Strategy Testing Engine will reduce the number of shares to 5,000.

Also, assuming the same maximum limit, if the Strategy allows for pyramiding, and there
are 1,000 shares in the open position, and the Strategy places an order to buy 5,500 shares,
the Trading Strategy Testing Engine will modify the order to 4,000 shares.

In summary, to determine how many contracts/shares the order will include, we need to
find the lowest of the two numbers:

Maximum contracts/shares per position (minus the current shares/contracts held)
as specified in the Position limits section
Number of contracts/shares requested by the order

The Maximum shares/contracts per position option enables you to set a global limit to
the number of contracts/shares traded by a Strategy. This allows you to vary the limit de-
pending on the symbol you are trading without having to modify the Strategies that are ap-
plied to the Chart Analysis window.

Limiting the Number of Open Entries per Position
When you enable pyramiding, it is possible for a Strategy to buy (or sell short) a number of
consecutive times (increasing the size of the position). You can specify the maximum num-
ber of times the Strategy can buy (or sell short) without closing any of the open entries. You
set this in the Position limits section of the Format Strategy dialog box, as shown in Fig-
ure 3-7.

Figure 3-6. Trade size section of Format Strategy dialog box

EasyLanguage for TradeStation 6 The Trading Strategy Testing Engine 111
The Maximum open entries per position option enables you to force the Strategy to ig-
nore any new orders to add to the current position once the Strategy has already bought
(or sold short) a specified number of consecutive times in a single position.

Stand-by Orders
Stand-by orders are orders that are generated by the Strategy that are not active. They
remain on stand-by for the duration of the bar on which they were placed until either the
bar is closed and the order is discarded, or conditions change during the bar such that the
order is made active.

For example, assume you have applied a Strategy to a daily chart, the bar being
evaluated is a Monday, and your current position is flat (neither long nor short). At this
point, the Strategy places an order to exit a long position on the next bar at the low or
anything lower. Since you are not currently in a long position, TradeStation generates
this order and places it on stand-by. You are not informed that this order has been
generated, it is invisible to you.

Now, assume that subsequently, an order to buy is placed for the next bar. During the
next bar (the Tuesday bar), the entry order is filled (and now your position is long). At
that point, the status of the exit order changes from stand by to active (and is listed on
the Strategy Orders tab of the Account Manager window). Conditions changed such
that the order was made active. However, if no long position had been established
during the Tuesday bar, the exit order would have been discarded.

This stand-by feature enables you to place protective stops on the bar of entry; the order
is placed on stand-by only until the close of the bar on which it is placed. Following is
a list of scenarios under which orders are placed on stand-by:

General Scenarios:
• If the Strategy is not in a long position, all sell orders for long positions are placed

in stand-by.
• If a sell order for a long position is tied to a specific entry, and the current long

position was not initiated by the entry to which the exit is tied, the exit order is
placed in stand-by.

• If the Strategy is not in a short position, all buy to cover orders for short positions

Figure 3-7. Format Strategy - General tab.

112 The Trading Strategy Testing Engine CHAPTER 3
are placed in stand-by.
• If a buy to cover order for a short position is tied to a specific entry, and the current

short position was not initiated by the entry to which the exit is tied, the buy to
cover order is placed in stand-by.

• If there are multiple or higher exit (sell or buy to cover) orders, the Strategy
traverses the orders, starting from the order with the lowest price, and adds the
number of shares/contracts in each exit order. Any orders above and beyond the
number of outstanding shares/contracts are placed in stand-by.

• If there are multiple or lower exit orders, the Strategy traverses the orders, starting
from the order with the highest price, and adds the shares/contracts that each order
is covering. Any orders above and beyond the number of outstanding shares/con-
tracts are placed in stand-by.

No Pyramiding:
• All cases already described under ‘General Scenarios’.
• If the Strategy is already in a long position, any additional stop or limit buy orders

are placed on stand-by.
• If the Strategy is in a short position, any additional stop or limit sell short orders

are placed on stand-by.
• If the Strategy is in a long or short position, and there is more than one or higher

exit order, all exit orders except the one with the lowest target price are placed on
stand-by.

• If the Strategy is in a long or short position, and there is more than one or lower
exit order, all exit orders except the one with the highest target price will be placed
on stand-by.

• If there are multiple or higher or or lower entry orders while the Strategy is not in
a long or short position, all orders except the order that is closest to the market will
be placed on stand-by.

Pyramiding - When the Order is Generated by a Different Entry Order:
• All cases already described under ‘General Scenarios’.
• If a Strategy is in a long or short position, and a new order is generated by the same

entry that opened the position, then the order is placed on stand-by.

Pyramiding - Regardless of the Entry that Generated the Order:
• All cases already described under ‘General Scenarios’.
• If the Strategy has more than one or higher entry orders, it will consider the lower

orders first, and if the combined orders reach the maximum number of shares/con-
tracts allowed by the Strategy, then all additional higher entry orders will be
placed on stand-by.

• If the Strategy has more than one or lower entry orders, it will consider the highest
orders first, and if the combined orders reach the maximum number of shares/con-
tracts allowed by the Strategy, then all additional higher entry orders will be
placed on stand-by.

Canceling Orders
As a general rule, all stop and limit orders are canceled at the close of the bar. For
example, if a trading strategy is applied to a daily price chart, and a buy limit order is
placed on Monday, then the order is active throughout the Tuesday bar. This limit order

EasyLanguage for TradeStation 6 The Trading Strategy Testing Engine 113
is canceled at the close of the session on Tuesday if the target price of the limit order
is not met by the market. This applies to intra-day charts as well.

Note that we use the word bar instead of day. This implies that if you apply a trading
strategy to a 30-minute bar, and the strategy places a buy limit order at 10am, the order
is active from 10am to 10:30am (or the duration of the bar) and canceled if the order is
not filled at the close of the bar.

There is one exception to this rule, and that is when a trading strategy places the exact
same order for two or more consecutive bars. In this case, TradeStation will not cancel
an order to replace it with an exact duplicate. Instead, it leaves the order active until it
is filled, or the order is not placed (or it is changed in some way).

For example, let’s assume that the trading strategy we apply to a daily chart places an
order to buy 100 shares at 50 limit on Monday. This order remains active through
Tuesday, and is canceled at the end of the trading session on Tuesday unless the
strategy places another order to buy 100 shares at 50 limit during the Tuesday bar. If
any element of the order changes, such as the number of shares, the price, etc., the order
is canceled, and a new active order is placed.

When you work with intra-day charts, you can write day-only orders (orders that are
canceled at the end of the day) by having the trading strategy place the exact same order
repeatedly throughout the day once it finds its entry point.

Stop and limit orders are canceled at the close of the bar when:

The order was not placed on this bar by the strategy
The order was placed but either the number of shares or the target price changed
from last bar
A different entry/exit order generated the order in the current bar
A different entry/exit order with a higher/lower target price was placed at a price
closer to the market (then the order is placed in stand-by mode)

Backtesting
During backtesting, TradeStation reviews all the historical data and derives the historical
results for the Strategy applied to the price chart.

Strategy Testing Data Resolution
The finer the data resolution that the strategy can analyze, the more accurate the Strategy
results are when comparing real-time results to backtested results. In real time, stop and
limit orders are monitored for possible fill prices on every tick received from your
datafeed; therefore, when your Strategy includes stop and/or limit orders, setting a
backtesting resolution will allow the most accurate simulation possible.

A bar has four prices: open, high, low, and close. By reading these four values, the only
certain fact is that the first and last prices traded correspond to the values of the open and
close, respectively. The order in which the market reached the high and low, and how
much the market oscillated when building the bar cannot be inferred from these four

114 The Trading Strategy Testing Engine CHAPTER 3
prices. Therefore, TradeStation must make assumptions about how the market moved
‘inside the bar.’

As shown in Figure 3-8, when formatting a Strategy, the General tab includes a section
labeled Backtesting that contains the option Backtesting resolution. This option
enables you to specify the data resolution to use when backtesting your Strategies. If you
don’t specify an option, the data resolution of the price chart to which the Strategy is
applied is used.

On an intraday chart, the most accurate Backtesting resolution available is one minute.
On Daily, Weekly and Monthly charts, the most accurate testing is to an individual Day.
TradeStation evaluates Strategies based on the selected Backtesting resolution, and
uses bar assumptions to simulate the trading activity within each period.

Also, due to performance considerations (memory and speed), it may not be convenient
or necessary to backtest to the most accurate data interval, but to backtest using simply
a finer resolution than what the chart contains. For example, if a test is performed
across 5,000 60-minute bars, the Strategy can look at 10-minute bars to find the fill
prices instead of every minute, since 5,000 60-minute bars is an enormous amount of
one minute bars to load and use on a price chart. In this case, TradeStation will apply
the bar assumptions to each 10-minute bar, looking for fill prices for the stop and/or
limit orders placed by the Strategy. This significantly improves the accuracy of the
results (over using 60-minute bars) but reduces considerably the resource requirements
when compared to testing the Strategy on a one minute resolution.

On the other hand, if a Strategy only places orders at the close of the current bar or on
the next bar at market, it is not necessary to backtest using a fine resolution because
these prices are always known.

Remember, from the four prices every bar has, we know at which price the bar opened
and at which price the bar closed, so if a Trading Strategy includes an order to buy at
the open of the next bar, this price will not be any different historically than in real
time. Examining the “bars within a bar” reveals no additional information about the
open or closing prices of the bar. Therefore, enabling the backtesting resolution setting
for Strategies containing only these types of orders does not increase the backtesting
accuracy of the Strategy.

Figure 3-8. Format Strategy - General tab.

EasyLanguage for TradeStation 6 The Trading Strategy Testing Engine 115
Bar Assumptions
When tick data is not available, TradeStation makes certain assumptions about how each
price bar was formed. These bar assumptions apply only when the Strategy uses stop and/
or limit orders; they do not apply when it includes only on close or at market orders, as de-
scribed in the section above.

After extensive research, a few rules were established to describe the ‘normal’
behavior of bars. The Trading Strategy Testing Engine follows these rules in an attempt
to simulate the market activity when there is not sufficient data available. However,
these are market assumptions designed to improve the accuracy of the testing when
there is not enough data available, and historical results will not always match real-
time results. The assumptions are:

1. The market traded at every valid price throughout the range of the bar.

2. If the open price is nearer to the low than to the high (i.e., the open is in the
bottom half of the bar), the intra-bar movement is assumed to be Open -> Low
-> High -> Close, chronologically (see Figure 3-9).

3. If the open price is in the upper half of the bar (i.e., nearer to the high than the
low), the intra-bar movement is assumed to be Open -> High -> Low -> Close,
chronologically (see Figure 3-9).

The first assumption implies that the fill prices of stop and limit orders during backtesting
may not be exactly the same as the results obtained while trading real time. Stop and limit
orders are interpreted as the first price available over or under a certain level; if you place
a buy stop order at 100, and the market trades at 99.875, and then the next trade jumps in
price to 100.5, the real-time order is filled at 100.5, but if the backtest is performed and the
tick data is not available to the Strategy, TradeStation will have no way of knowing that the
market jumped in price, so the order is filled at 100.

The second and third assumptions are important only when there are multiple active orders
in one bar. If a Strategy places both a stop loss and a profit target order, and both prices are
reached during one particular bar, the behavior of the market inside that bar determines if
the trade is a winner or a loser.

For instance, if the market dropped, reached the low, and then rallied to the high, the stop
loss was hit first and the trade lost money. However, if the high is reached first, the profit

Figure 3-9. Intra-bar movement assumption

116 The Trading Strategy Testing Engine CHAPTER 3
target makes the trade a winner. Without the tick data available, there is no certain way to
determine how the market moved during the bar. The assumptions may or may not be cor-
rect.

Keep in mind however, that by law of averages, if a backtest includes sufficient incidents
of these scenarios, and they are resolved in a consistent fashion, the errors in favor and
against tend to offset each other.

Bouncing Ticks
The markets do not move in straight lines, and they tend to oscillate even when in a strong
trend. In fact, the market will rarely, if ever, move in the straight line as assumed by the
second and third market assumptions explained in the previous section. Even within a
bar, the market will usually oscillate as it reaches the highs and lows, and its movement
will generally more closely resemble the illustration in Figure 3-10 than a straight line.

To simulate this behavior, the Trading Strategy Testing Engine uses a technique called
‘bouncing ticks’ that simulates market oscillations whenever stop or limit orders are
filled. This method simulates market activity by bouncing the assumed price a certain
percentage of the bar’s range (10% by default) in the opposite direction of any filled stop

Figure 3-10. Normal intra-bar price movement

EasyLanguage for TradeStation 6 The Trading Strategy Testing Engine 117
or limit order. The Bouncing Ticks setting may be changed under the Chart Analysis
Preferences dialog box (Figure 3-11).

For example, if the range of the bar is 10 points, and a buy stop order is filled,
TradeStation looks down the bar as far as 1 point under the entry price of the buy stop
order looking for other orders to fill before continuing with the bar assumptions (Figure
3-12). If the stop or limit order filled is read as an or higher order, the Trading Strategy
Testing Engine bounces the tick down, if the order is read as an or lower order, it bounces
the tick up.

Bouncing ticks affect Strategy results in a very minor way, and only when the Strategy
includes multiple stop and limit orders that are placed very close to each other.

Let’s look at an example of how bouncing ticks can affect your Strategy results.

Figure 3-11. Percent increment for Bouncing Ticks

Figure 3-12. Bouncing tick

118 The Trading Strategy Testing Engine CHAPTER 3
Suppose there are three orders active for a particular bar: a Buy stop order at 100, a Sell
Short stop order at 99.125, and an Sell limit order at 103. The market opens at 99.5, goes
up to 105, falls to 90, and finally closes at 92. What trades took place, and what is the
your market position at the close of the bar?

If bouncing ticks is not enabled (set to 0%), the Buy stop order is filled first, followed by
the Sell limit order, resulting in a profit, and then the Sell Short order is filled, leaving
you in a short position at the close of the bar.

If bouncing ticks is set to 10%, the Buy stop order is filled, then TradeStation bounces
the price 10% lower, hitting the Sell Short stop (this exits you from the long position with
a loss and establishes a short position), and bounces the price again, this time upwards.
At this point, since there are no valid orders left (the Sell order is ignored since you are
in a short position), TradeStation finishes traversing the bar normally, and leaves you in
a short position. This example is illustrated in Figure 3-13.

With this technique, TradeStation introduces several oscillations into the intra-bar move-
ment without having the underlying tick data. This particular example showed how the
bouncing tick technique can turn a winning trade to a losing trade; however, it can just as
easily turn a losing trade into a winning trade. Again, if a backtest includes sufficient inci-
dents of these scenarios, and they are resolved in a consistent fashion, the errors in favor
and against tend to offset each other.

It is very important to remember that this technique is designed to simulate market activity,
but it is only a simulation. Actual market movement may differ significantly from this sim-
ulation, and produce differences in the Strategy Performance Report results.

Figure 3-13. Bouncing tick example

EasyLanguage for TradeStation 6 Order Placement 119
Order Placement
Using the four trading verbs, you can simulate a wide variety of trading ideas and order
types. This section describes the four trading verbs—Buy, SellShort, Sell, and
BuyToCover—in detail.

This trading verb is used to open a long position (it covers your short positions and
opens a long position). The specifics of the order are defined by the optional
parameters used in the statement (i.e., number of shares, at what price, etc.).

Syntax:
Buy [(“Order Name”)] [Number of Shares] Execution Method;

Only the word Buy and the Execution Method are required to open a long position. The fol-
lowing is a complete EasyLanguage statement:

Buy This Bar on Close ;

If no other parameters are specified, the default value for the Order Name is "Buy", and the
number of contracts entered is then determined by the amound specified in the Trade size
section of the Format Strategies dialog box.

Each portion of the statement, Order Name, Number of Shares, and Execution Method is
described next.

Order Name
When using multiple long entries within a Strategy, it is helpful to label each entry order
with a different name. By naming entry orders, you can easily identify all positions, both
on the chart and in the Strategy Performance Report. Also, naming the entry orders allows
you to tie an exit to a particular entry order (For information on doing this, refer to the dis-
cussion of the trading verb “Sell” on page 124).

To name a long entry order, include a descriptive name in quotation marks and within pa-
renthesis after the trading verb Buy. For example:

Buy (“My Entry”) This Bar on Close ;

This instruction initiates a long position named My Entry. Again, when a Strategy that con-
tains this statement is applied to a price chart, the order name is displayed on the chart and
in the Strategy Performance Report under the Trades tab (Figure 3-14).

Buy

120 Order Placement CHAPTER 3
Number of Shares/Contracts
To specify how many shares (or contracts) to open the long position with, place a
numeric expression followed by the words shares (or contracts) after the trading verb
Buy (and entry order name if used). Some examples:

Buy (“My Entry”) 100 Shares Next Bar at Market ;

Buy 5 Contracts This Bar on Close ;

Buy Value1 Shares Next Bar at Market ;

Note: The words shares and contracts are synonymous.

If the number of shares/contracts is not specified, the value entered under the Trade size
section of the Format Strategy dialog box is used. The Trade size section controls the de-
fault trade amount; this can be set to either a fixed unit or dollars per transaction. Whatever
is specified in this section is used by the Trading Strategy Testing Engine only if the Buy
statement does not specify the number of shares/contracts with which to open the position.

Figure 3-14. Naming Trading Orders

EasyLanguage for TradeStation 6 Order Placement 121
Execution Method
You can use four different execution methods with the Buy trading verb:

... this bar on close

... next bar at market

... next bar at price Stop

... next bar at price Limit

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you cannot automate using
TradeStation. Given that all orders are evaluated and executed at the end of each bar,
TradeStation reads and issues the this bar on close order once the bar has closed (e.g., once
the daily trading session has ended). TradeStation fills the order using the close of the cur-
rent bar, but you must place an order at market for execution on the next bar. This invariably
introduces slippage.

The execution method next bar at price Limit instructs TradeStation to buy at the first op-
portunity at the specified price or lower. The execution method next bar at price Stop in-
structs TradeStation to buy at the first opportunity at the specified price or higher.

It is possible for stop and limit orders not to be filled (i.e., price never met); in this case, the
orders are canceled at the close of the bar.

Examples
The following statement buys 100 contracts/shares at the closing price of the bar:

Buy 100 Shares This Bar on Close;

This statement buys the number of contracts/shares specified in the Trade size section of
the Format Strategy dialog box at the open of the next bar, and is named Entry#1:

Buy (“Entry#1”) Next Bar at Market;

The next statement places an order to buy 5 contracts at the high of the current bar plus the
range of the current bar, or any price higher. Note that Range is a function that returns the
high minus the low. This order remains active throughout the next bar (until filled or can-
celed):

Buy 5 Contracts Next Bar at High + Range Stop;

The next statement places an order to buy 100 shares at the lowest low of the last 10 bars,
or any price lower. This order remains active throughout the next bar (until filled or can-
celed), and the order is named LowBuy:

Buy (“LowBuy”) 100 Shares Next Bar at Lowest(Low, 10) Limit ;

SellShort

122 Order Placement CHAPTER 3
This trading verb is used to open a short position. A short position is created by
covering all open long positions (if any) and opening a short position. The specifics of
the order are defined by the optional parameters used in the statement (i.e., number of
shares, at what price, etc.).

Syntax:
SellShort [(“Order Name”)] [Number of Shares] Execution Method ;

Only the word SellShort and the Execution Method are required to open a short position.
The following is a complete EasyLanguage statement:

SellShort This Bar on Close ;

If no other parameters are specified, the default value for the Order Name is "Short", and
the number of contracts entered is then determined by the amount specified in the Trade
size section of the Format Strategy dialog box, General tab.

Each portion of the statement, Order Name, Number of Shares, and Execution Method is
described next.

Order Name
When using multiple short entries within a Strategy, it is helpful to label each entry order
with a different name. By naming entry orders, you can easily identify all positions both on
the chart and in the Strategy Performance Report. Also, naming the entry orders allows you
to tie an exit to a particular entry order (for information on doing this, refer to the discussion
of the trading verb “BuyToCover” on page 128).

To name a short entry order, include a descriptive name in quotation marks and within pa-
renthesis after the trading verb SellShort. For example:

SellShort (“My Entry”) This Bar on Close ;

This instruction initiates a short position named My Entry. Again, when a Strategy that con-
tains this statement is applied to a price chart, the order name is displayed on the chart and
in the Strategy Performance Report under the Trades tab (see Figure 3-14, “Naming Trad-
ing Orders,” on page 120).

Number of Shares/Contracts
To specify how many shares (or contracts) to open the short position with, place a
numeric expression followed by the words shares (or contracts) after the trading verb
SellShort (and entry order name if used). Some examples:

SellShort (“My Entry”) 100 Shares This Bar on Close ;

SellShort 5 Contracts Next Bar at Market ;

SellShort Value1 Shares Next Bar at Market ;

Note: The words shares and contracts are synonymous.

EasyLanguage for TradeStation 6 Order Placement 123
If the number of shares/contracts is not specified, the value entered under the Trade size
section of the Format Strategy dialog box is used. The Trade size section controls the de-
fault trade amount; this can be set to either a fixed unit or dollars per transaction. Whatever
is specified in this dialog box is used by the Trading Strategy Testing Engine only if the
SellShort statement does not specify the number of shares/contracts with which to open the
position.

Execution Method
You can use four different execution methods with the trading verb SellShort:

... this bar on close;

... next bar at market;

... next bar at price Stop;

... next bar at price Limit;

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you cannot automate using
TradeStation. Given that all orders are evaluated and executed at the end of each bar,
TradeStation reads and issues the this bar on close order once the bar has closed (e.g., once
the daily trading session has ended). TradeStation fills the order using the close of the cur-
rent bar, but you have to place an order at market to be executed on the next bar. This in-
variably introduces slippage.

An order to SellShort next bar at price Limit instructs TradeStation to sell short at the first
opportunity at the specified price or higher. A SellShort next bar at price Stop order in-
structs TradeStation to sell short at the first opportunity at the specified price or lower.

It is possible for stop and limit orders not to be filled (i.e., price never met); in this case, the
orders are canceled at the close of the bar.

Examples
The following statement sells short 100 contracts/shares at the closing price of the current
bar:

SellShort 100 Shares This Bar on Close;

This statement sells short the number of contracts/shares specified in the Trade size section
of the Format Strategy dialog box at the open of the next bar, and is named Entry#2:

SellShort (“Entry#2”) Next Bar at Market;

The next statement places an order to sell 5 contracts at the low of the current bar minus the
range of the current bar, or any price lower. Note that Range is an EasyLanguage function
that returns the high minus the low of the current bar. This order remains active throughout
the next bar (until filled or canceled).

SellShort 5 Contracts Next Bar at Low - Range Stop;

124 Order Placement CHAPTER 3
The following statement places an order to sell 100 shares at the highest high of the last
10 bars, or any price higher. This order remains active throughout the next bar (until
filled or canceled) and is named HighSell:

SellShort (“HighSell”) 100 Shares Next Bar at Highest(High,10)
Limit;

This trading verb is used to close a long position. The specifics of the order are defined
by the optional components used in the statement (i.e., how many shares/contracts, at
what price, etc.).

Exit orders do not pyramid. Once the exit criteria is met and the exit order filled, the
order is ignored for that position until the position is modified (i.e., more shares/
contracts are bought or a new long position is established).

Syntax:
Sell [(“Order Name”)] [from entry (“Entry Name”)] [Number of

Shares [Total]] Execution Method;

Only the word Sell and the Execution Method are required to exit a long position. For ex-
ample:

Sell This Bar on Close ;

If no other parameters are specified, the default value for the Order Name is "Sell", and all
long contracts will be exited from the position.

Each portion of the statement, Order Name, Number of Shares, and Execution Method
are described next.

Order Name
When using multiple exits within a Strategy, it is helpful to label each exit order with a
different name. As shown in Figure 3-14, this enables you to identify these exit orders in
both the price chart and the Strategy Performance Report.

To assign an exit order a name, specify a name in quotation marks and within parentheses
immediately after the word Sell. For example:

Sell (“My Exit”) This Bar on Close ;

This instruction closes the entire long position, and the order is labeled My Exit.

Tying an Exit to an Entry
It is possible to tie an exit instruction to a specific entry. This can be achieved only if you
named the long entry, and the long entry is in the same Strategy as the exit order.
Consider the following Strategy:

Buy (“MyBuy”) 10 Shares Next Bar at Market;

Sell

EasyLanguage for TradeStation 6 Order Placement 125
Buy 20 Shares Next Bar at High + 1 Point Stop ;

Sell From Entry (“MyBuy”) Next Bar at High + 3 Points Stop;

In the above example, the Strategy may buy 30 shares total; your long position is 30
shares. However, the Sell instruction only closes out the 10 shares bought using the
MyBuy entry order. It ignores any other order, and does not close out the other 20 shares.
Therefore, this exit order leaves you long 20 shares.

You can also close part of an entry order. For example, if your entry, which you named
“MyBuy” buys 10 shares, you can specify that you want to exit from entry “MyBuy” but
only close out 5 shares, not the entire 10:

Sell From Entry (“MyBuy”) 5 Shares Next Bar at High + 3
Points Stop;

Important: The entry name is case sensitive. Be sure to use consistent capitalization.
Also, it is important to remember that exit orders do not pyramid; therefore, if an exit
does not close out a position, you will need another exit order (or reversal order) in
order to close out the position.

Number of Shares/Contracts
To specify how many shares (or contracts) to close, place a numeric expression followed
by the word shares or contracts after the trading verb Sell. Some examples:

Sell 100 Shares This Bar on Close ;

Sell From Entry (“MovAvg”) 10 Shares Next Bar at High + 1
 Point Stop ;

Note: The words shares and contracts are synonymous.

If you do not specify the number of shares or contracts in the Sell instruction, the exit
order closes out the entire long position, rendering your position flat.

When you specify the number of shares/contracts, the Sell instruction exits the specified
number of shares/contracts from every open entry.

Therefore, if the Strategy allows for pyramiding, and has bought 500 shares twice (for a
total of 1,000 shares), and an order to Sell 100 shares is placed by the Strategy, the
instruction will exit a total of 200 shares: 100 shares from each of the two entries. Figure
3-15 illustrates this example. After buying a total of 1,000 shares (500 at two different
entry points), the order based on the instruction Sell 100 shares next bar at market exits
a total of 200 shares, 100 from each entry, leaving you in a long position consisting of

126 Order Placement CHAPTER 3
800 shares. The onscreen cues in Figure 3-15 show you how many shares you hold in
your current position.

However, if you want to exit a total of 100 shares, you can use the word Total in the Sell
instruction. Using the word Total instructs the Strategy to exit 100 shares from the first
open entry (first in, first out). This example is illustrated in Figure 3-16.

Figure 3-15. The instruction ‘Sell 100 shares next bar at market’ exits 100 shares out of each open entry.

Figure 3-16. The instruction ‘Sell 100 shares total next bar at market’ exits 100 shares out of the oldest open entr(ies).

EasyLanguage for TradeStation 6 Order Placement 127
Execution Method
You can use four different execution methods with the trading verb Sell:

... this bar on close

... next bar at market

... next bar at price Stop

... next bar at price Limit

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you use with TradeStation when trad-
ing real-time. Given that all orders are evaluated and executed at the end of each bar,
TradeStation reads and issues the this bar on close order once the bar has closed (e.g., once
the daily trading session has ended). TradeStation fills the order using the close of the cur-
rent bar, but you have to place an order at market to be executed on the next bar. This in-
variably introduces slippage.

An order to Sell at price Limit instructs TradeStation to exit a long position at the first op-
portunity at the specified price or higher. A Sell at price Stop instructs TradeStation to exit
a long position at the first opportunity at the specified price or lower.

It is possible for stop and limit orders not to be filled (i.e., price never reached); in this case,
the orders are canceled at the close of the bar.

Tying the Exit Price to the Order Bar
When specifying the execution method, you can vary stop and limit orders by using ‘At$’
instead of ‘at’. Using At$ forces the exit order to refer to the value the numerical expression
Price had on the entry order bar (the bar that generated the entry order). Consider the fol-
lowing statement:

Sell From Entry (“MyBuy”) Next Bar At$ Low - 1 Point Stop;

The above statement places an order to exit the long position at one point lower than the
low of the entry order bar (e.g., if an order to Buy next bar... is generated today, the prices
referenced will be today’s, not tomorrow’s. Even though the order was placed and filled
tomorrow, it was generated today, and that is the bar referenced).

To use the At$ reserved word, you must name the entry order, and the Sell instruction must
refer to the specific entry order.

As another example, if the maximum risk you will tolerate for a position is 5 points under
the closing price of the entry order bar, you can use the following statement:

Sell From Entry (“MyBuy”) Next Bar At$ Close - 5 Points
Stop;

This is a valuable technique that allows you to refer easily to the prices of the bar on which
the entry order was generated.

128 Order Placement CHAPTER 3
Examples
This statement exits all contracts/shares of your open long position at the close of the
current bar. Your position will be flat.

Sell This Bar on Close;

The next instruction exits all contracts/shares of your positions opened by the entry order
Entry#1 at the open of the next bar, and the exit order is named LongExit.

Sell (“LongExit”) From Entry (“Entry#1”) Next Bar at Market;

The following statement places an order to close 5 contracts/shares in total at the low of the
current bar minus 1 point or anything lower. This order is active throughout the next bar
(until filled or canceled):

Sell 5 Contracts Total Next Bar at Low - 1 Point Stop;

The next instruction places an order to exit 100 shares from every entry at the high plus
the range of the current bar or anything higher. This order is active throughout the next
bar (until filled or canceled) and will be named HighExit.

Sell (“HighExit”) 100 Shares Next Bar at High + Range Limit;

The following statement allows you to monitor your risk by placing an exit order 5 points
below the closing price of the bar that generated the long entry order:

Sell From Entry (“MyBuy”) Next Bar At$ Close - 5 Points
Stop;

This trading verb is used to cover a short position. The specifics of the order are defined
by the optional components used in the statement (i.e., how many shares/contracts, at
what price, etc.).

Exit orders do not pyramid. Once the exit criteria is met and the exit order filled, the
order is ignored for that position until the position is modified (i.e., more shares/
contracts are sold or a new short position is established).

Syntax:
BuyToCover [(“Order Name”)] [from entry (“Entry Name”)] [Number of

Shares [Total]] Execution Method ;

Only the word BuyToCover and the Execution Method are required to exit a short position.
The following is a complete EasyLanguage statement:

BuyToCover This Bar on Close ;

If no other parameters are specified, the default value for the Order Name is "Cover", and
all short contracts will be exited from the position.

Each portion of the statement, Order Name, Entry Name, Number of Shares, and Execution
Method are described next.

BuyToCover

EasyLanguage for TradeStation 6 Order Placement 129
Order Name
When using multiple exits within a Strategy, it is helpful to label each one with a different
name. As shown in Figure 3-14, this helps to identify these exit orders in both the price
chart and the Strategy Performance Report.

To assign an exit order a name, specify a name in quotation marks and parentheses after
the trading verb BuyToCover. For example:

BuyToCover (“My Exit”) This Bar on Close ;

This statement exits the short position in its entirety, and the order is named My Exit.

Tying an Exit to an Entry
It is possible to tie an exit instruction to a specific entry. This can be done only if you
name the short entry, and if the short entry is in the same Strategy as the exit. For
example:

SellShort (“MyShort”) Next Bar at Market ;

BuyToCover from Entry (“MyShort”) This Bar on Close ;

In the above example, the Strategy may short 30 shares total; your short position is 30
shares. However, the BuyToCover statement only closes out the 10 shares shorted using
the MyShort entry order. It ignores any other order, and does not close out the other 20
shares. Therefore, this exit order leaves you short 20 shares.

You can also close out part of an entry order, For example, if your entry "MyShort" sells
short 10 shares, you can specify that you want to exit from entry "MyShort" but only close
out 5 shares, not the entire 10:

BuyToCover from Entry (“MyShort”) 5 Shares Next Bar at Low - 3
Points Stop ;

Important: The entry name is case sensitive. Be sure to use consistent capitalization.
Also, it is important to remember that exit orders do not pyramid; therefore, if an exit
does not close out a position, you will need another exit order (or reversal order) in
order to close out the position.

Number of Shares/Contracts
To specify how many shares/contracts to close out, use a numeric expression followed
by the word shares after the trading verb BuyToCover. For example:

BuyToCover 100 Shares This Bar on Close ;

or

BuyToCover 5 Contracts Next Bar at Market ;

130 Order Placement CHAPTER 3
Note: The words shares and contracts are synonymous.

If you do not specify the number of shares/contracts in the BuyToCover instruction, the
order exits all shares/contracts, rendering your position flat.

If you do specify the number of shares/contracts, the BuyToCover instruction exits the
determined number of shares/contracts out of every open entry. For example, if the
Strategy allows for pyramiding, and has shorted 500 shares three times (for a total of
1,500 shares), and an order to BuyToCover 100 shares is placed, the exit order will exit
a total of 300 shares: 100 shares from each one of the three entries. Refer to the discussion
on the trading verb “Sell” on page 124 for an additional examples and charts illustrating
this feature.

However, if the purpose of the BuyToCover statement is to exit a total of 100 shares, you
can use the reserved word Total in the BuyToCover statement. Using the word Total
causes the Strategy to exit 100 shares from the oldest open entry (first in, first out). For
example:

BuyToCover 100 Shares Total This Bar on Close;

BuyToCover From Entry ("MovAvg") 10 Shares Total Next Bar at
 Low - 1 Point Stop;

Execution Method
You can use four different execution methods with the trading verb BuyToCover:

... this bar on close;

... next bar at market;

... next bar at price Stop;

... next bar at price Limit;

The execution method this bar on close is provided for backtesting purposes only; it en-
ables you to backtest ‘market at close’ orders, which you use with TradeStation when trad-
ing real-time. Given that all orders are evaluated and executed at the end of each bar,
TradeStation reads and issues the this bar on close order once the bar has closed (e.g., once
the daily trading session has ended). TradeStation fills the order using the close of the cur-
rent bar, but you must place an order at market to be executed on the next bar. This invari-
ably introduces slippage.

An order to BuyToCover at price Limit causes TradeStation to close a short position at the
first opportunity at the specified price or lower. An BuyToCover at price stop order causes
TradeStation to close at the first opportunity at the specified price or higher.

It is possible for stop and limit orders not to be filled (i.e., price never reached); in this case,
the orders are canceled at the close of the bar.

Tying the Exit Price to the Order Bar

EasyLanguage for TradeStation 6 Order Placement 131
When specifying the execution method, you can vary the stop and limit orders by using
‘At$’ instead of ‘at’. Using At$ forces the exit order to refer to the value the numerical ex-
pression Price had on the entry order bar (the bar that generated the entry order). Consider
the following statement:

BuyToCover From Entry (“MyBuy”) Next Bar At$ High + 1 Point
 Stop;

The statement places an order to exit the short position at one point higher than the high of
the entry order bar. For example, if an order to SellShort next bar is generated today, the
prices referenced will be today’s, not tomorrow’s. Even though the order was placed and
filled tomorrow, it was generated today and that is the bar referenced.

To use the reserved word At$, you must name the entry order, and the BuyToCover instruc-
tion must refer to the name of the specific entry order.

As another example, if the maximum risk you will tolerate for a position is 5 points over
the closing price of the entry order bar, you can use the following expression:

BuyToCover From Entry (“MySell”) Next Bar At$ Close + 5 Points
 Stop;

This is a valuable technique that allows you to refer easily to the prices of the bar on which
the entry order was generated.

Examples
The next statement exits all contracts/shares of all open short entries at the close of the cur-
rent bar:

BuyToCover This Bar on Close;

The following instruction exits all contracts/shares of any short entries opened by the entry
order Entry#1 at the open of the next bar, and this order is named ShortExit.

BuyToCover (“ShortExit”) From Entry (“Entry#1”) Next Bar at
Market;

The next instruction places an order to close 5 contracts in total at the high of the current
bar plus 1 point or higher. This order is active during the next bar (until filled or canceled):

BuyToCover 5 Contracts Total Next Bar at High + 1 Point Stop;

The next instruction places an order to exit 100 shares out of every open entry at the low
minus the range of the current bar or anything lower. This order is active throughout the
next bar (until filled or canceled), and is named MyExit.

BuyToCover (“MyExit”) 100 Shares Next Bar at Low - Range Limit;

The following statement enables you to monitor your risk by placing an exit order 5 points
over the closing price of the bar on which you generated the short entry order:

BuyToCover From Entry (“MySell”) Next Bar At$ Close + 5 Points
 Stop;

132 Understanding Built-in Stops CHAPTER 3
Understanding Built-in Stops
Stops are exit orders that are not market driven; they exit you from the market based
on your risk tolerance or desired profit. TradeStation provides six built-in stops in the
form of Strategies that are written using specific reserved words. The built-in stops are
unique because the reserved words they use are recalculated on every tick instead of at
the completion of a bar. In other words, they are active on the bar of entry and updated
for every bar of a position on a tick-by-tick basis. All other EasyLanguage instructions
you write are calculated at the completion of a bar only.

This unique behavior is especially important to remember when using the trailing stop.
Once a built-in stop order is placed, the value of the trailing stop is recalculated on
every tick, and if necessary, the stop order is canceled and a new stop order is placed
before the completion of a bar. This means that a built-in stop order can be generated,
placed, and filled on the same bar using the prices from that bar.

For example, assume you apply a trading strategy that contains a built in trailing stop
to a daily chart. The price at which the order is placed is recalculated every tick. If the
price for the order differs from the last calculation (e.g., because the market made a
new high), then the open order is canceled and a new order is placed on the current bar,
regardless of the status of the bar.

The drawback to using the built-in stops (or your own Strategies written with the
specific reserved words) is that since they are updated on every tick, the given stop
price may not be realistically attainable because of the tick by tick updating of the stop
price. In addition, the results of these stops (like any entry/exit orders) can be affected
by bar assumptions.

You can combine the six built-in stops with other trading strategies, or you can use the
specific reserved words as orders in your own Strategies. The eight specific reserved
words are listed next, along with a description of the corresponding trading strategy.

This reserved word is used to place an order to exit the position or contract/share at the
breakeven point once the specified amount of profit is reached.

Syntax:
SetBreakEven(FloorAmnt)

Parameters:
FloorAmnt is the amount of profit to be reached before the exit order is placed.

Notes:
Use with SetStopContract or SetStopPosition.

Strategy:
Breakeven StopFloor — When the profit (for the position or per contract/share)
exceeds the breakeven floor, an exit order is generated. The exit order is a stop order
placed at the entry price (average entry price if multiple entries) plus the commission
specified in the Trade costs section of the General tab when formatting the strategy.

SetBreakEven

EasyLanguage for TradeStation 6 Understanding Built-in Stops 133
The profit on a position basis is calculated by subtracting any commissions specified
in the Trade costs section from the overall position profit. The profit on a contract/
share basis is calculated by dividing the overall position profit by the number of
contracts/shares and then subtracting the commissions from the resulting value.

The Breakeven StopFloor strategy only takes effect once a certain amount of profit is
reached, so in a given position, it may never take effect.

This reserved word is used to place an order to exit the position or contract/share on
the close of the last bar of the trading session.

Syntax:
SetExitOnClose

Parameters:
None

Strategy:
Close at End of Day — The Close at End of Day strategy has no inputs. It will exit all
open positions at the close of the trading session. It is particularly useful for day traders
who do not want to hold any positions overnight.

This reserved word is used to specify the amount, based on the maximum open position
profit, you are willing to lose (in dollars). The position or contract/share is closed out
when the specified amount is lost.

Syntax:
SetDollarTrailing(DollarValue)

Parameters:
DollarValue is the amount of the maximum open profit that you are willing to lose.

Notes:
Use with SetStopContract or SetStopPosition.

Strategy:
Dollar Risk Trailing — The Dollar Risk Trailing strategy allows you to indicate the
maximum amount of money you are willing to risk on a position, based on the
maximum open position profit. The maximum profit is calculated from the point of
entry using the highest high when long, or the lowest low when short. The dollar
amount of profit per contract or per position you are willing to risk is then subtracted,
and the trailing stop is placed at that point.

For example, assume that a dollar risk trailing stop is placed for $500. A protective stop
would be placed for the maximum profit minus $500. If the amount you are willing to
risk is greater than the maximum open position profit, this trailing stop does not take
effect.

SetExitOnClose

SetDollarTrailing

134 Understanding Built-in Stops CHAPTER 3
Consequently, the Dollar Risk Trailing strategy only locks in profits; it does not exit a
position if you have a loss on the trade. Therefore, you should not use it to limit losses.

This reserved word is used to specify the amount of the maximum open position profit
you are willing to lose (as a percent) as well as the profit level that must be reached in
order for the stop to take effect. The position or contract/share is closed out when the
specified percentage of the maximum profit is lost.

Syntax:
SetPercentTrailing(FloorAmnt, Amount)

Parameters:
FloorAmnt is the amount of profit to be reached before the stop takes effect. Amount is
the percent of the profit you are willing to lose.

Notes:
Use with SetStopContract or SetStopPosition.

Strategy:
PercentRisk Trailing — The PercentRisk Trailing strategy enables you to indicate what
percent of the maximum position profit you are willing to give back before the position
is automatically closed out. It also requires that you provide a minimum profit level
that must be reached by the position before the stop will take effect.

The maximum profit is calculated from the point of entry using the highest high when
long or the lowest low when short. The percent of this amount per contract that you are
willing to risk is then subtracted, and the trailing stop is placed at that point.

For example, assume that a PercentRisk Trailing Stop is placed at 20% with a floor of
$500. Once profits exceed the floor value of $500, the stop will become active. The
stop is then placed for the maximum profit to date minus 20%.

If the maximum open position profit for the trade does not exceed the floor level, this
trailing stop does not take effect. Consequently, this stop only locks in profits, it does
not limit losses.

This reserved word is used to specify the amount of profit you want to reach in order
to close out the position or per contract/share.

Syntax:
SetProfitTarget(DollarValue)

Parameters:
DollarValue is the amount of profit to reach in order to close the position (or exit from
the contracts/shares).

Notes:
Use with SetStopContract or SetStopPosition.

SetPercentTrailing

SetProfitTarget

EasyLanguage for TradeStation 6 Understanding Built-in Stops 135
Strategy:
Profit Target — The Profit Target strategy enables you to set a profit target (in dollars
per contract/share or per position) at which your position is automatically closed out.
If that profit level is never reached, the stop will not take effect. This stop locks in
profits, it does not limit losses.

This reserved word is used to specify the amount you are willing to lose per position
or per contract/share.

Syntax:
SetStopLoss(DollarValue)

Parameters:
DollarValue is the amount you are willing to lose per position or per contract/share.

Notes:
Use with SetStopContract or SetStopPosition.

Strategy:
Stop Loss

The Stop Loss Strategy enables you to specify the maximum amount of money you are
willing to risk on any position, or on any one contract/share.

For example, if you specify a per position stop loss of $500 on your S&P 500 Futures
contracts, TradeStation automatically exits the entire position when losses on the
position reach $500. If on S&P 500 Futures, you specify a per contract stop loss of
$500, TradeStation automatically exits the position when losses for any contract reach
$500.

A Stop Loss Strategy should never be used as the only exit your trading strategy as
using it requires the position to lose money in order to exit the trade.

For example, if the market goes in your favor, and you achieve a great deal of profit,
you would have to lose all of that profit, plus the amount you specify as the stop loss
value before the strategy would issue an order liquidating the contract/share or
position.

This reserved word forces an evaluation per contract/share of the stop that is being
used. If neither SetStopContract or SetStopPosition is used, the stop is evaluated on a
position basis.

This reserved word forces an evaluation on a position basis of the stop that is being
used. If neither SetStopContract or SetStopPosition is used, the stop is evaluated on a
position basis.

SetStopLoss

SetStopContract

SetStopPosition

136 Writing Indicators and Studies CHAPTER 3
Writing Indicators and Studies
Indicators and studies display information on a price chart. The most common definition
of an indicator is a mathematical formula that returns a number for every bar on a chart,
with its resulting value displayed as a line, histogram, or series of points.

Studies are much like indicators, except that they have specific formatting built-in. The
studies available to you in TradeStation are ShowMe, PaintBar, ProbabilityMap, and
ActivityBar.

This section discusses how to write indicators, and is followed by sections describing
how to write studies.

Writing Indicators
When you apply an indicator to a price chart, you can format the indicator to display
its values in different ways; for example, as shown in Figure 3-17, you can format the
indicator to display as a line on the chart, as a histogram underneath the price data, or
as a series of dots, etc.

You can even format the properties of an indicator to display as a bar chart. For
example, in the case of an indicator with three or four plots, such as the Custom 4-Lines
Indicator, you can format the indicator and set one plot to bar high, another to bar low,

Figure 3-17. Different formatting styles of indicators

EasyLanguage for TradeStation 6 Writing Indicators and Studies 137
one to left tick and another to right tick. The Custom 4 Lines indicator displayed as a
bar chart is shown in Figure 3-18.

For more information on formatting indicators, please refer to the TradeStation
WebHelp.

Also, make sure you understand the concept of scaling with respect to price charts and
indicators. Using different scaling can dramatically alter the display of your indicators.
For information on scaling, search the TradeStation WebHelp for Indicator
Formatting.

The Plot statements used to write indicators for price charts are discussed next.

Displays values, resulting from a calculation or an expression, in a price chart. For price
charts, the values displayed can only be numeric.
Syntax:
PlotN(Expression[,“<PlotName>”[,ForeColor[,Default,[,Width]]]]);

Parameters:
N is a number between 1 and 4, representing one of the four available plots. Expression is
the numeric value plotted, and <PlotName> is the name of the plot. ForeColor is an Easy-

PlotN(Expression, “<PlotName>”, ForeColor, Default, Width)

Figure 3-18. Indicator formatted to display as a bar chart

138 Writing Indicators and Studies CHAPTER 3
Language color used for the plot (also referred to as PlotColor), Default is reserved for fu-
ture use, and Width is a numeric value representing the width of the plot. The parameters
<PlotName>, ForeColor, Default, and Width are optional.

For a list of the available colors and widths, refer to Appendix B of this book.
Notes:
The parameter Default currently has no effect. However, a value for the parameter is re-
quired in order to specify a width, as discussed in the example.
Example:
Any one or more of the optional parameters can be omitted, as long as there are no other
parameters to the right. For example, the Default and Width parameters can be excluded
from a statement as follows:

Plot1(Volume, “V”, Red);

But the plot name cannot be omitted if you want to specify the plot color and width. For
instance, the following example generates a syntax error because the name of the plot state-
ment is expected:

Incorrect:
Plot1(Volume, Black, Default, 2);

Correct:
Plot1(Volume, “V”, Black, Default, 2);

The only required parameter for a valid Plot statement is the value to be plotted. So the fol-
lowing statement is valid:

Plot1(Volume);

When no plot name is specified, EasyLanguage uses Plot1, Plot2, Plot3, or Plot4 as the plot
names for each plot. The first plot is named Plot1, the second Plot2, and so on.

Whenever referring to the plot color or width, you can use the word Default in place of the
parameter(s) to have the Plot statement use the default color and/or width selected in the
Style and/or Color tabs of the Format Indicator dialog box.

For example, the following statement will display the volume in the default color but spec-
ifies a specific width:

Plot1(Volume, “V”, Default, Default, 3);

Again, you can use the word Default for the color parameters or the width parameter.

Also, the same plot (i.e., Plot1, Plot2) can be used more than once in an analysis technique;
the only requirement is that you use the same plot name in both instances of the Plot state-
ment. If no name is assigned, then the default plot name is used (i.e., Plot1, Plot2).

For example, if you want to plot the net change using red when it is negative and green
when it is positive, you can use the same plot number (in this case Plot1) twice, as long a
the name of the plot is the same:

Value1 = Close - Close[1];

EasyLanguage for TradeStation 6 Writing Indicators and Studies 139
If Value1 > 0 Then
 Plot1(Value1, “NetChg”, Green)
Else
 Plot1(Value1, “NetChg”, Red);

In this example, the plot name “NetChg” must be the same in both instances of the Plot
statement.

Note: Once you have defined a plot using the PlotN reserved word, you can reference
the value of the plot simply by using the reserved word, PlotN. In the example below,
the reserved word Plot1 is used to plot the accumulation distribution of the volume. The
value of the plot is referenced in the next statement, in order to write the alert criteria:

Plot1(AccumDist(Volume), "AccumDist") ;

If Plot1 > Highest(Plot1, 20) then Alert ;

This reserved word is used to change the color of a particular plot in a price chart
window.

Syntax:
SetPlotColor(Number, Color);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Color is
the EasyLanguage color to be used for the plot.

For a list of the available colors, refer to Appendix B of this book.

Example:
The following EasyLanguage statements color the plot red when the RSI Indicator is
over 75, and green when it is under 25:

Plot1(RSI(Close, 9), “RSI”);

SetPlotColor(1, Default);

If Plot1 > 75 Then
SetPlotColor(1, Red);

If Plot1 < 25 Then
SetPlotColor(1, Green);

In this example, the RSI Indicator has three possible colors: red when it is over 75,
green when it is below 25, and the default color when it is between 25 and 75. If you
only set two colors, one for over 75 and one for under 25, it would remain one of the
two colors (which ever it was set to last) when it is between 25 and 75.

What you need to do is reset the plot color to a default color every bar so that it is only
red when above 75 and green when below 25. The rest of the time it is the default color.

SetPlotColor(Number, Color)

140 Writing ShowMe and PaintBar Studies CHAPTER 3
In this example, we used the SetPlotColor reserved word to reset the plot to the default
color.

You can also set the default color of the plot using the PlotN reserved word. If you set
the default color in the PlotN statement, then you don’t have to use the first
SetPlotColor statement; instead your instructions would be as follows:

Plot1(RSI(Close, 9), “RSI”, Default) ;

If Plot1 > 75 Then
 SetPlotColor(1, Red) ;

If Plot1 < 25 Then
 SetPlotColor(1, Green) ;

This reserved word sets the width of the specified plot.
Syntax:
SetPlotWidth(Number, Width);

Parameters:
Number is a number from 1 to 4 representing the number of the plot to modify. Width is
the EasyLanguage width to be used for the plot.

For a list of the available widths, refer to Appendix B of this book.
Example:
The following EasyLanguage statements change the width of the plot to a thicker line
when the Momentum Indicator is over 0, and to a thinner line when it is under 0:

Plot1(Momentum(Close, 10), “Momentum”) ;

If Plot1 > 0 Then
SetPlotWidth(1, 4);

If Plot1 < 0 Then
SetPlotWidth(1, 1);

In this example, the Momentum Indicator has two possible widths: thicker when it is
over 0, and thinner when it is below 0. However, in some cases you will want the
indicator to have three or more possible widths. Please refer to the example for the
previous reserved word, SetPlotColor for a variation on the usage of the SetPlotWidth
reserved word.

Writing ShowMe and PaintBar Studies
ShowMe and PaintBar studies are somewhat similar to one another, in that both look for
a bar that meets a specific condition and marks the bar if the condition is met. Their
difference lies in the way each study marks the bar: the PaintBar study colors the entire
bar, while the ShowMe studies typically place a mark above or below the bar.

A ShowMe study is best used when the objective of the analysis is to find a criteria that
normally happens once every certain number of bars. A mark (usually a round dot) is

SetPlotWidth(Number, Width)

EasyLanguage for TradeStation 6 Writing ShowMe and PaintBar Studies 141
placed above or below these bars. The intention of the ShowMe study is to save you the
work of scrolling through the chart looking for bars that meet a certain criteria.

A PaintBar study is best used to highlight when a market enters a certain mode or trend.
In other words, it is best used in order to highlight an event that happens for a number of
consecutive bars. For example, in Figure 3-19, we see how a ShowMe study is used to
find all Bullish Key Reversal bars, and a PaintBar study is used to find whenever the
momentum of the symbol is positive.

ShowMe Studies
To write ShowMe studies, you use the PlotN reserved word described on page 137 but
instead of plotting a value for every tick or bar, you specify the conditions under which
you want the Plot statement to be executed using an IF-THEN statement. Also, instead
of specifying the value to plot, you specify the value on the bar at which to place the
mark when the conditions are met (for example, the high, low, open, close, or any other
numeric value).

Below is an example from the Outside Bar ShowMe study, which places a mark at the
high of the bar when the high is higher than the previous high and the low is lower than
the previous low:

If High > High[1] AND Low < Low[1] Then

Plot1(High, “Outside Bar”) ;

In the above example, we specified only the value at which to place the mark, in this
case, the high price of the bar, and we named the plot Outside Bar. We could also
specify the color of the mark and the width, or thickness, of the mark, as described in
the discussion of the reserved word PlotN.

Figure 3-19. ShowMe and Paintbar studies

142 Writing ShowMe and PaintBar Studies CHAPTER 3
When working with ShowMe studies, you have an additional reserved word available
to you, NoPlot.

This reserved word removes the specified plot from the current bar in the price chart.

Syntax:
NoPlot(Num)

Parameters:
Num is a numeric expression representing the number of the plot to remove.

Notes:
This reserved word is useful when collecting data and you have the Update on every
tick check box selected for the ShowMe study. If the ShowMe study condition
becomes true during the bar, but is not true at the end of the bar, the mark is removed.
If you do not use this reserved word, the mark would be placed on the bar when the
condition became true and left there even when the condition was no longer true.

Example:
The following ShowMe study marks the low of a gap down bar, but removes the mark
if the condition is no longer true for the bar:

If High < Low of 1 Bar Ago Then

Plot1(Low, “GapDown”)

Else

NoPlot(1) ;

PaintBar Studies
To write PaintBar studies, you use the reserved words described next.

This reserved word is used only within a PaintBar study, and enables you to paint the
entire bar a specified color or paint the bar between two specified values.

Syntax:
PlotPaintBar(BarHigh, BarLow [, BarOpen [, BarClose

[, "<PlotName>"[, ForeColor[, Default [, Width]]]]]]);

Parameters:
BarHigh, BarLow, BarOpen and BarClose are numeric expressions representing the
high, low, open and closing prices for the bar to be drawn by the PaintBar study, and
<PlotName> is the name of the plot. ForeColor is an EasyLanguage color that will be used
to paint the bar, Default is currently not used, and Width is a numeric value representing the
width of the plot.

NoPlot(Num)

PlotPaintBar(BarHigh, BarLow , "PlotName", ForeColor, Default, Width)

EasyLanguage for TradeStation 6 Writing ShowMe and PaintBar Studies 143
Notes:
You can also specify only two of the bar parameters instead of the four: BarHigh, BarLow.
However, you must specify either two or all four of the bar parameters.

The parameter Default currently has no effect on a chart; however, you do need to include
it in the statement when you want to specify Width.

You can abbreviate the PlotPaintBar reserved word to PlotPB. Also, you can use the
PlotN reserved word described previously to write a PaintBar study; however, we rec-
ommend you use the PlotPaintBar reserved word.

For a list of the available colors and widths, refer to Appendix B of this book.

Example:
For example, the following instructions can be used in order to paint red the bars with
twice the 10-bar average of the volume:

If Volume > 2 * Average(Volume, 10) Then

 PlotPB(High, Low, Open, Close, "AvgVol", Red);

The following instructions paint the area between the two plots of the Bollinger Bands
Indicator when the 14-bar ADX value is lower than 25:

Variables: Top(0), Bottom(0);

Top = BollingerBand(Close, 14, 2);

Bottom = BollingerBand(Close, 14, -2);

If ADX(14) < 25 Then

 PlotPaintBar(Top, Bottom, “Area”, Blue);

In this last example, notice that although we omitted the BarOpen and BarClose
parameters, we are still able to specify the name and color of the plot. We applied this
PaintBar study to a chart and formatted it to use a dotted line. The result is shown in
Figure 3-20.

144 Writing ShowMe and PaintBar Studies CHAPTER 3

This reserved word removes the specified plot from the current bar in the price chart.

Syntax:
NoPlot(Num)

Parameters:
Num is a numeric expression representing the number of the plot to remove.

Notes:
This reserved word is useful when collecting data and you have the Update on every
tick check box selected for the PaintBar study. If the PaintBar study condition becomes
true during the bar, but is not true at the end of the bar, the plot is removed from that
bar. If you do not use this reserved word, the bar is painted when the condition becomes
true and remains painted even when the condition is no longer true.

Example:
The following PaintBar study paints the bars while the close is less than the 10-bar
average of the close, but removes the plot from the current bar if the condition is no
longer true:

NoPlot(Num)

Figure 3-20. Use of a PaintBar study to shade an area of the chart

EasyLanguage for TradeStation 6 Writing ProbabilityMap Studies 145
If Close < Average(Close, 10) Then

PlotPaintBar(High, Low, “Price<BarAvg”)

Else

NoPlot(1) ;

A PaintBar study uses one plot for two parameters; therefore, to remove the above plot, you
need to use one NoPlot statement, as shown above. If you use four price parameters with
the PlotPaintBar reserved word, then you use two NoPlot statements to remove the plot,
NoPlot(1) and NoPlot(2).

Writing ProbabilityMap Studies
ProbabilityMap studies create a ‘drawing area’ to the right of any bar clicked in a Chart
Analysis window. They are most commonly used to show the most probable path, or area
where the symbol will move to in the future. An example of this is show in Figure 3-21.

You can also base ProbabilityMap studies on other analysis techniques, thereby providing
a forecast of values based on the analysis technique.

However, this is not the only use for ProbabilityMap studies, as the analysis technique
provides a canvas on which you can draw any pattern or figure.

As mentioned above, when creating a new ProbabilityMap study, your first task is to define
the drawing area. This area is rectangular and divided into a grid with rows and columns.
As illustrated in Figure 3-22, the number of rows is defined by a top and bottom price, and
a row height, and the number of columns defined as a number of bars. You set these values
using reserved words.

When the grid is initially created, it contains zeros (0) in all cells. Therefore, after you de-
fine the drawing area, you should assign a number between 0 and 100 to each one of the

Figure 3-21. A ProbabilityMap study attempting to forecast future market activity.

146 Writing ProbabilityMap Studies CHAPTER 3
cells in the grid. This number reflects the probability that the price (or value) will reach that
particular cell.

As explained above, when creating a ProbabilityMap study, a rectangular area is created
and divided into a grid with a specified number of rows and columns. Each one of the cells
in this grid is assigned a value from 0 to 100, representing the probability that the price will
reach that cell. When the ProbabilityMap study is applied to price chart, a color is assigned
to each cell of the drawing area, thereby creating the ProbabilityMap graph.

As shown in Figure 3-23, there are three available patterns: fire, smoke, and fade. You
specify the pattern using the Style tab in the Format ProbabilityMap dialog box.

When creating ProbabilityMap studies, it is important to know that they are evaluated the
same way as other analysis techniques (and as is explained in Chapter 2, “The Basic Ele-
ments of EasyLanguage”); however, they do not take into account all the bars on the price

Figure 3-22. ProbabilityMap Study drawing area

Figure 3-23. ProbabilityMaps color patterns

EasyLanguage for TradeStation 6 Writing ProbabilityMap Studies 147
chart, as do other analysis techniques. They take into account only however many bars are
specified by the MaxBarsBack setting.

For instance, if 50 bars are specified in the MaxBarsBack setting, and we place our Proba-
bilityMap pointer on the 53rd bar of the price chart, the ProbabilityMap study begins cal-
culating on the 50th bar of the chart, and so on until the 53rd bar until it displays the
drawing area. However, if we place our pointer on the 100th bar of the price chart, the Prob-
abilityMap study will begin calculating on the 51st bar of the chart and so on until the most
recent bar, at which point it will display the drawing area (the drawing area is actually cre-
ated for each of the 50 bars, however, it is displayed for one bar at a time, that is why it is
visible only on the selected bar).

This is illustrated in Figure 3-24.

As with any trading strategy or analysis technique, you must specify the number of bars to
use in the Maximum Number of Bars study will reference box (MaxBarsBack).

The reserved words available for the use of ProbabilityMap studies are divided into two
groups: Set reserved words and Get reserved words. The Set reserved words are used to de-
fine the properties of the ProbabilityMap studies and to draw the graph itself. The Get re-
served words, on the other hand, are used to read the values of an existing ProbabilityMap
study or other analysis techniques applied to the price chart.

Figure 3-24. ProbabilityMap studies calculate only on the last MaxBarsBack of the chart

148 Writing ProbabilityMap Studies CHAPTER 3
Set Reserved Words
To create a ProbabilityMap, you will use all the ProbabilityMap Set reserved words.
These words define the size and properties of the ProbabilityMap study drawing area.

This reserved word specifies the upper boundary of the ProbabilityMap area. The
ProbabilityMap is not drawn above the value specified.

Syntax:
PM_SetHigh(Num)

Parameters:
Num is a numeric expression representing the upper boundary of the ProbabilityMap
study.

Example:
The following statement sets the upper boundary of the ProbabilityMap study to a value of
the close plus three times the range of the current bar:

 PM_SetHigh(Close + (Range * 3));

This reserved word specifies the lower boundary of the ProbabilityMap area. The
ProbabilityMap is not drawn below the value specified.
Syntax:
PM_SetLow(Num)

Parameters:
Num is a numeric expression representing the lower boundary of the ProbabilityMap.

Example:
The following statement sets the lower boundary of the ProbabilityMap study to the a value
equal to the lowest low of the last 20 bars:

 PM_SetLow(Lowest(Low,20));

This reserved word is used to determine the number of columns inside the ProbabilityMap
drawing area. The ProbabilityMap is not drawn past the number of columns (bars)
specified.

Syntax:
PM_SetNumColumns(Num)

Parameters:
Num is a numeric expression representing the maximum number of bars to the right of
the current bar that the ProbabilityMap is to be drawn.

PM_SetHigh(Num)

PM_SetLow(Num)

PM_SetNumColumns(Num)

EasyLanguage for TradeStation 6 Writing ProbabilityMap Studies 149
Example:
The following statement defines the ProbabilityMap study drawing area to 50 bars:

PM_SetNumColumns(50);

You can use the following expression to set the ProbabilityMap drawing area to have as
many columns as bars to the right available in the chart:

PM_SetNumColumns(MaxBarsForward);

This reserved word is used to specify (in points) the height of each row of the
ProbabilityMap drawing area.
Syntax:
PM_SetRowHeight(Num)

Parameters:
Num is a numeric expression representing the row height.

Notes:
The row height of the drawing area is usually specified as:

(ProbabilityMap Upper Boundary - ProbabilityMap Lower Boundary) / Number of Rows
So, for instance, if the difference between the upper and lower boundaries of the Probabil-
ityMap is 50, and you want 100 rows, the row height must be 0.5. The more rows there are
in the ProbabilityMap, the better ‘resolution’; in other words, the grid cells are smaller and
the resulting graph appears smother and more detailed. However, it takes more time to
draw, as there are more cells to calculate and for which to draw ProbabilityMap values.
Example:
If you want to have 50 rows in the ProbabilityMap, the following instructions specify the
appropriate row height:

PM_SetRowHeight((PM_High - PM_Low) / 50);

This reserved word is used to set the value of an individual cell in the ProbabilityMap
drawing area.

Syntax:
PM_SetCellValue(Column, Price, Value)

Parameters:
Column, Price, and Value are numeric expressions. Column and Price are the column and
the row of the drawing area, respectively, and Value is a numeric expression between 0
and 100 that colors that particular cell according to the color patterns shown in Figure 3-
23.

PM_SetRowHeight(Num)

PM_SetCellValue(Column, Price, Value)

150 Writing ProbabilityMap Studies CHAPTER 3
Example:
The following statement sets the cell in the column corresponding to the close of the last
bar on the chart (the first bar in the ProbabilityMap drawing area) to a value of 100:

PM_SetCellValue(1, Close, 100);

Get Reserved Words
The Get reserved words enable trading strategies, analysis techniques, and functions to
read information from the ProbabilityMap study.

This reserved word returns a numeric value representing the lower boundary of the
ProbabilityMap study drawing area. This value is important to ensure that you don’t
query values outside of the ProbabilityMap study drawing area.

Syntax:
PM_Low

Parameters:
None

Example:
The following statement checks whether or not a particular value is inside the upper and
lower boundaries of the ProbabilityMap study drawing area before assigning a color
value to a cell:

If Value1 >= PM_Low AND Value1 <= PM_High Then

PM_SetCellValue(1, Value1, 100);

This reserved word returns a numeric value representing the upper boundary of the
ProbabilityMap study drawing area. This value is important to ensure that you don’t
query the values outside of the ProbabilityMap study drawing area.

Syntax:
PM_High

Parameters:
None

Example:
The following statement checks whether or not a particular value is inside the upper and
lower boundaries of the ProbabilityMap study drawing area before assigning a color
value to a cell:

If Value1 >= PM_Low AND Value1 <= PM_High Then

PM_SetCellValue(1, Value1, 100);

PM_Low

PM_High

EasyLanguage for TradeStation 6 Writing ProbabilityMap Studies 151

This reserved word returns numeric value representing the height (in points) of the cells
of the ProbabilityMap study drawing area.

Syntax:
PM_GetRowHeight

Parameters:
None. To obtain the value returned by this reserved word, you can assign the value to a
numeric variable, for example, Value1.

Notes:
This value should be used as an increment when traversing the ProbabilityMap study
drawing area.

Example:
The following loop traverses the first column of the ProbabilityMap study drawing area:

Value1 = PM_Low;

While Value1 < PM_High Begin

{ EasyLanguage instructions }

Value1 = Value1 + PM_GetRowHeight;

End;

This reserved word returns a numeric value representing the number of columns of the
ProbabilityMap study drawing area.

Syntax:
Value1 = PM_GetNumColumns

Parameters:
None. To obtain the value returned by this reserved word, you can assign the value to a
numeric variable, for example, Value1.

Example:
The following loop traverses a row of the ProbabilityMap study drawing area from the
first to the last column:

For Value1 = 1 To PM_GetNumColumns Begin

{ EasyLanguage instruction(s) }

End;

PM_GetRowHeight

PM_GetNumColumns

152 Writing ProbabilityMap Studies CHAPTER 3
This reserved word returns the number corresponding to the value of the specified cell of
the ProbabilityMap study drawing area. The number returned by this reserved word is
between 0 and 100, corresponding to the color patterns shown in Figure 3-23.

Syntax:
Value1 = PM_GetCellValue(Column, Price)

Parameters:
Column and Price are numeric expressions representing the cell in the ProbabilityMap
study drawing area for which you want to obtain the value. To obtain the value returned by
this reserved word, you can assign the value to a numeric variable, for example, Value1.

Example:
The following statement obtains the value of the cell in the lower left corner of the Proba-
bilityMap study drawing area:

Value1 = PM_GetCellValue(1, PM_Low);

ProbabilityMap Related Functions
When creating ProbabilityMaps, the following functions will be useful.

This function returns the probability that price will rise or remain above a price target,
given the current price, volatility and time remaining in bars. ProbAbove is a simple
function.

Syntax:
ProbAbove(PriceTarget, CurrentPrice, VltyVal, BarsToGo)

Parameters:
PriceTarget is a numeric expression representing the supposed future value that ProbAbove
is testing. CurrentPrice is the current market price of the symbol being tested and VltyVol
is the annualized volatility calculated for that symbol. BarsToGo is the time (number of
bars) into the future that is desired to determine the ProbAbove.
Example:
The following statement calculates that chance that the symbol, which is currently trading
at 100, will be trading at 110 or higher 30 bars into the future:

Value1 = ProbAbove(110, 100, .50, 30);

This function returns the probability that price will fall or remain below a price target,
given the current price, volatility and time remaining in bars. ProbBelow is a simple
function.

PM_GetCellValue(Column, Price)

ProbAbove(PriceTarget, CurrentPrice, VltyVal, BarsToGo)

ProbBelow(PriceTarget, CurrentPrice, VltyVal, BarsToGo)

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 153
Syntax:
Value1 = ProbBelow(PriceTarget, CurrentPrice, VltyVal, BarsToGo)

Parameters:
PriceTarget is a numeric expression representing the supposed future value that ProbBelow
is testing. CurrentPrice is the current market price of the symbol being tested and VltyVol
is the annualized volatility calculated for that symbol. BarsToGo is the time (number of
bars) into the future that is desired to determine the ProbBelow.

Example:
The following statement calculates that chance that the symbol, which is currently trading
at 110, will be trading at 100 or lower 30 bars into the future:

Value1 = ProbBelow(100, 110, .50, 30);

This function returns the probability that price will remain or fluctuate with a price
range specified, given the current price, volatility and time remaining in bars.
ProbBetween is a simple function.

Syntax:
ProbAbove(LowTarget, HighTarget, CurrentPrice, VltyVal, BarsToGo)

Parameters:
LowTarget and HighTarget are numeric expressions representing the low- and high-end
values that ProbBetween is testing. CurrentPrice is the current market price of the symbol
being tested and VltyVol is the annualized volatility calculated for that symbol. BarsToGo
is the time (number of bars) into the future that is desired to determine the ProbBetween.
Example:
The following statement calculates that chance that the symbol, which is currently trading
at 105, will be trading between 100 and 110 in exactly 30 bars into the future:

Value1 = ProbBetween(100, 110, 105, .50, 30);

Writing ActivityBar Studies
ActivityBar studies provide you with the ability to show trading patterns that occur within
a range of bars on a chart. Unlike other indicators or studies, which consist of lines drawn
between price points or that plot symbols above or below a bar, ActivityBar studies produce
a series of cells to the right or left of a bar that show additional information about the trading
activity within each bar.

ActivityBar studies break down each bar into smaller bars by adding cells to the right or
left of the bar following the EasyLanguage instructions provided in the ActivityBar study.
When writing new ActivityBar studies in the PowerEditor, it is helpful to think of the stud-
ies as multi-data analysis techniques, where the two data streams are for the same symbol,
but one data stream has a finer resolution (smaller data interval) than the other and is placed
in a hidden subgraph.

ProbBetween(LowTarget, HighTarget, CurrentPrice, VltyVal, BarsToGo)

154 Writing ActivityBar Studies CHAPTER 3
All the EasyLanguage instructions are evaluated on the hidden data stream, referred to as
the ActivityData data stream, and the resulting cells are added to the visible bars.

When creating an ActivityBar study, only two instructions are necessary. The first is the
instruction that defines the height of the cells, which is determined on a bar-by-bar basis.
The other is the instruction or criteria that determines whether or not a cell is added.

You can also define and draw a zone around the ActivityBar study cells. You can draw this
zone to the left, right, or on both sides of the bar. The EasyLanguage instructions define the
upper and lower boundaries for the left and right zone separately, the width is automatically
determined by the longest row of cells. For example, if the longest row has 35 cells, the
zone is drawn wide enough to include all 35 cells.

You can also draw an arrow or pointer to highlight a specific price of the bar. You can draw
this arrow on the left or right side of the bar (or both). By default, these pointers are drawn
on the open and closing prices of the bar.

The ActivityBar study reserved words can be divided into three groups: 1) Set keywords
used to set the properties of the ActivityBar study, 2) Get keywords used to obtain infor-
mation on an existing ActivityBar study, and 3) other reserved words that are not necessary
to when creating ActivityBar studies, but are helpful when working with them. Reserved
words in the first two groups, Set and Get, are described next. For information on reserved
words in the third group, refer to the Reserved Word Library in the TradeStation WebHelp.

Set Reserved Words
There are many ActivityBar study reserved words, but only two are required to write
an ActivityBar study: AB_AddCell and AB_SetRowHeight. These and the other Set
reserved words for ActivityBar studies are discussed next.

This reserved word is used to add a cell to the current bar of the chart. You can only add
cells to the bar currently being analyzed (e.g., AB_AddCell(...)[1] is not allowed). This re-
served word must be included in an ActivityBar study.
Syntax:
AB_AddCell(Price, Side, Str_Char, Color, Value)

Parameters:
Price is a numeric expression representing the price value at which the cell is added. It can
be any value inside or outside the range of the bar.

Side specifies the side of the bar on which the cell is placed, and it accepts one of two re-
served words, LeftSide or RightSide.

Str_Char is the text string expression representing the text stored in the cell being added.
The expression is limited to one character. If the text string expression is longer than one
character, only the first character is used (e.g., if you use the text string expression “High”
the letter “H” is placed in the cell).

Color is the EasyLanguage color or its numeric equivalent representing the color in which
the cell is drawn. For a list of the available colors, see Appendix B.

AB_AddCell(Price, Side, Str_Char, Color, Value)

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 155
Value is a numeric expression stored in the cell. This value is required; however, it does not
affect the calculation of the ActivityBar study, and is solely for your use. You can refer to
the value later from the ActivityBar study itself or from other analysis techniques that ref-
erence the ActivityBar study. Use zero (0) for this parameter if you do not want to specify
a meaningful value.

Notes:
When writing an ActivityBar study, you must also specify the cell height. To do so, use
the reserved word AB_SetRowHeight, described next.
Example:
The following statement adds a green cell to the right side of the bar for every tick. Each
cell contains the letter A, and stores the trade volume for the tick in each cell:

AB_AddCell(Close of ActivityData, RightSide, “A”, Green,

Volume of ActivityData);

This reserved word is used to define the height of each cell (row) on a bar-by-bar basis;
it is required when writing an ActivityBar study.
Syntax:
AB_SetRowHeight(Value)

Parameters:
Value is a numeric expression representing the row height.

Notes:
You want the row height to be dynamic because symbols vary greatly in price from one
symbol to another. For example, a row height of 0.25 will work nicely if the instrument is
trading at $50, but it will be an enormous row height for a penny stock trading at $1 per
share. Also, the trading range for a symbol can change significantly during a span of several
years (e.g., a stock adjusted for several stock splits), and an appropriate row height for to-
day may not work well in the past or the future. The built-in ActivityBar studies use the
reserved word AB_RowHeightCalc as the parameter for this reserved word to calculate a
dynamic row height.

When writing an ActivityBar study, you must also use the AB_AddCell reserved word
(discussed previously) to add cells.
Example:
The following statement sets the row height to 1/20th of the average range of the last 10
bars. The result is approximately 20 rows of cells per bar:

AB_SetRowHeight(Average(Range, 10) / 20);

This reserved word defines the properties of the ActivityBar study zone.
Syntax:
AB_SetZone(HighVal, LowVal, Side)

AB_SetRowHeight(Value)

AB_SetZone(HighVal, LowVal, Side)

156 Writing ActivityBar Studies CHAPTER 3
Parameters:
HighVal and LowVal are numeric expressions representing the upper and lower
boundaries of the ActivityBar study zone, respectively. Side is one of two reserved
words LeftSide or RightSide, which specifies the side of the bar on which the zone is
drawn.

Notes:
The zone is drawn on every bar using the same drawing properties (color and thickness) of
the bars, and is wide enough to fit the widest row of cells of that bar. The ActivityBar study
zone is not drawn if there are no cells for a bar.

Example:
The following statements draw the ActivityBar study zone to the left of each bar at one
standard deviation above and below the median price of the ActivityBar cells:

Value1 = AB_Median(RightSide);

Value2 = AB_StdDev(1, RightSide);

AB_SetZone(Value1 + Value2, Value1 - Value2, RightSide);

The above example uses the reserved words AB_Median and AB_StdDev. These
reserved words are described in Appendix C, “Reserved Words Quick Reference,” as
well as in TradeStation WebHelp.

ActivityBar studies display price markers on each bar on the chart. By default, these
markers are drawn at the open (left side) and closing prices (right side). This reserved word
overrides the default placement of these markers, allowing you to place them at any
location on the bar.

Syntax:
AB_SetActiveCell(Price, Side)

Parameters:
Price is a numeric expression representing the price at which you want to place the marker,
and Side defines the marker to move (left or right). Side only accepts one of two reserved
words, LeftSide or RightSide.
Example:
The following statements place the right side marker at the modal cell of the ActivityBar
study:

Value1 = AB_Mode(RightSide);

AB_SetActiveCell(Value1, RightSide);

This reserved word is used to remove a cell from the current bar of an ActivityBar study.
Syntax:
AB_RemoveCell(Price, Offset, Side)

AB_SetActiveCell(Price, Side)

AB_RemoveCell(Price, Offset, Side)

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 157
Parameters:
Price is a numeric expression representing the price of the row from which the cell is to be
removed. Offset is the column number of the cell to be removed (where column 1 is the
closest to the bar), and Side specifies the side of the bar on which the cell is located (you
must use one of two reserved words, LeftSide or RightSide, to specify the side).
Notes:
If the specified cell does not exist, the ActivityBar study generates a run time error with the
message “ActivityBar tried to reference an empty row.”
Example:
The following statement removes the last cell on the right side of the bar, from the row cor-
responding to the close of the bar:

Value1 = AB_GetNumCells(Close of Data1, RightSide);

AB_RemoveCell(Close of Data1, Value1, RightSide);

This example uses the reserved word AB_GetNumCells to obtain the number of cells
on the right side of the ActivityBar, and then uses the value obtained as the Offset
parameter for AB_RemoveCell.

Get Reserved Words
Using the reserved words described in this section, you can reference information on
existing ActivityBar study cells from any other analysis technique, trading strategy, or
function.

This reserved word returns the text string expression held by the specified cell.
Syntax:
AB_GetCellChar(Price, Side, Offset)

Parameters:
Price is a numeric expression representing the price of the cell referenced. Side specifies
the side of the bar on which the cell is located (you must use one of two reserved words,
LeftSide or RightSide, to specify the side), and Offset is the column number of the cell ref-
erenced (where column 1 is the closest to the bar).
Notes:
You can use this reserved word in an ActivityBar study as well as any other analysis
technique, trading strategy, or function. To store the text string expression returned by
the reserved word, you can assign this reserved word to a text string variable. If you
reference a cell that does not exist, a runtime error will occur.
Example:
The following statements retrieve the text string expression held in the first cell of the row
corresponding to the closing price of the current bar:

Variable: Str(“ ”);

Str = AB_GetCellChar(Close of data1, LeftSide, 1);

AB_GetCellChar(Price, Side, Offset)

158 Writing ActivityBar Studies CHAPTER 3
This reserved word returns a number representing the color used to draw the specified cell.
Syntax:
AB_GetCellColor(Price, Side, Offset)

Parameters:
Price is a numeric expression representing the price of the cell referenced. Side specifies
the side of the bar on which the cell is located (you must use one of two reserved words,
LeftSide or RightSide, to specify the side), and Offset is the column number of the cell ref-
erenced (where column 1 is the closest to the bar).
Notes:
To store the number returned by the reserved word, you can assign this reserved word
to a numeric variable. The numeric value returned is the EasyLanguage numeric equiva-
lent used to specify colors. For a list of the available colors, refer to Appendix B of this
book. You can use this reserved word in an ActivityBar study as well as any other anal-
ysis technique, trading strategy, or function. If you reference a cell that does not exist,
a runtime error will occur.
Example:
The following statement retrieves the color of the first cell on the right side located at the
opening price of the bar. The color is assigned to the variable Value1:

Value1 = AB_GetCellColor(Open of Data1, RightSide, 1);

Each time a cell is added to a bar, the date and time of when it was added is stored with the
cell. This reserved word returns the EasyLanguage date corresponding to the date the cell
was added to the bar.

Syntax:
AB_GetCellDate(Price, Side, Offset)

Parameters:
Price is a numeric expression representing the price of the cell being referenced. Side spec-
ifies the side of the bar on which the cell is located (you must use one of two reserved
words, LeftSide or RightSide, to specify the side), and Offset is the column number of the
cell referenced (where column 1 is the closest to the bar).
Notes:
To store the date returned by the reserved word, you can assign this reserved word to
a numeric variable. You can use this reserved word in an ActivityBar study as well as
any other analysis technique, trading strategy, or function. If you reference a cell that
does not exist, a runtime error will occur.

AB_GetCellColor(Price, Side, Offset)

AB_GetCellDate(Price, Side, Offset)

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 159
Example:
The following statement retrieves the date of the first cell on the right side at the opening
price of the bar, and assign this date to the numeric variable Value1:

Value1 = AB_GetCellDate(Open of Data1, RightSide, 1);

Each time a cell is added to a bar, the date and time of when it was added is stored with the
cell. This reserved word returns the time that the cell was added to the bar.
Syntax:
AB_GetCellTime(Price, Side, Offset)

Parameters:
Price is a numeric expression representing the price of the cell being referenced. Side spec-
ifies the side of the bar on which the cell is located (you must use one of two reserved
words, LeftSide or RightSide, to specify the side), and Offset is the column number of the
cell referenced (where column 1 is the closest to the bar).
Notes:
To store the time returned by the reserved word, you can assign this reserved word to
a numeric variable. You can use this reserved word in an ActivityBar study as well as
any other analysis technique, trading strategy, or function. If you reference a cell that
does not exist, a runtime error will occur.
Example:
The following statement retrieves the time of the first cell on the right side at the opening
price of the bar, and assigns this date to the numeric variable Value1:

Value1 = AB_GetCellDate(Open of Data1, RightSide, 1);

When you add a cell to a bar using the AB_AddCell reserved word, you can store a value in
the cell. You use the AB_GetCellValue reserved word to obtain the value.
Syntax:
AB_GetCellValue(Price, Side, Offset)

Parameters:
Price is a numeric expression representing the price of the cell being referenced. Side spec-
ifies the side of the bar on which the cell is located (you must use one of two reserved
words, LeftSide or RightSide, to specify the side), and Offset is the column number of the
cell referenced (where column 1 is the closest to the bar).
Notes:
To store the value returned by the reserved word, you can assign this reserved word to
a numeric variable. You can use this reserved word in an ActivityBar study as well as
any other analysis technique, trading strategy, or function. If you reference a cell that
does not exist, a runtime error will occur.

AB_GetCellTime(Price, Side, Offset)

AB_GetCellValue(Price, Side, Offset)

160 Writing ActivityBar Studies CHAPTER 3
Example:
The following statement retrieves the value stored in the first cell on the right side at the
opening price of the bar, and assigns this value to the numeric variable Value1:

Value1 = AB_GetCellValue(Open of Data1, RightSide, 1);

This reserved word returns the number of cells in a specified row.
Syntax:
AB_GetNumCells(Price, Side)

Parameters:
Price is a numeric expression representing the price of the row being referenced, and Side
specifies the side of the bar (Side accepts one of two reserved words, LeftSide or RightSide).
Notes:
If you reference any attribute of a non-existent cell, a run time error is generated by the
ActivityBar study when applied to a chart. For example, if at price 100 there are 5 cells to
the right of the bar, and the study attempts to obtain the color of cell number 6, an error is
generated and the study is turned off. You can avoid these errors by using the
AB_GetNumCells reserved word to determine the number of available cells before attempt-
ing to reference any of them.

To store the resulting value, you can assign this reserved word to a numeric variable. You
can use this reserved word in an ActivityBar study as well as any other analysis
technique, trading strategy, or function.

Example:
The following statements obtain the text string expression stored in the last cell in the row
corresponding to the open of the bar. Notice that we first obtain the total number of cells in
the desired row, and store this number in the variable Value1. We then use the resulting
number (Value1) to obtain the text string expression:

Variable: Str(“ ”);

Value1 = AB_GetNumCells(Open of Data1, RightSide);

Str = AB_GetCellChar(Open of Data1, Value1, RightSide);

This reserved word returns a numeric value representing the upper boundary of the
ActivityBar study zone.

Syntax:
AB_GetZoneHigh(Side)

Parameters:
Side specifies the side for which to obtain the value. Side accepts one of two reserved
words, LeftSide or RightSide.

AB_GetNumCells(Price, Side)

AB_GetZoneHigh(Side)

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 161
Notes:
To store the resulting value, you can assign this reserved word to a numeric variable. You
can use this reserved word in an ActivityBar study as well as any other analysis
technique, trading strategy, or function.

Example:
The following statement assigns the high price of the ActivityBar zone to the numeric
variable Value1:

Value1 = AB_GetZoneHigh(RightSide);

This reserved word returns a numeric value representing the lower boundary of the
ActivityBar study zone.

Syntax:
AB_GetZoneLow(Side)

Parameters:
Side specifies the side for which to obtain the value. Side accepts one of two reserved
words, LeftSide or RightSide.

Notes:
To store the resulting value, you can assign this reserved word to a numeric variable. You
can use this reserved word in an ActivityBar study as well as any other analysis
technique, trading strategy, or function.

Example:
The following statement assigns the low price of the ActivityBar zone to the numeric
variable Value1:

Value1 = AB_GetZoneLow(RightSide);

This reserved word returns a numeric value representing the highest price on the bar at
which a cell is drawn.

Syntax:
AB_High

Parameters:
None.

Notes:
If no cells are drawn, a value of zero (0) is returned. To store the resulting value, you can
assign this reserved word to a numeric variable. You can use this reserved word in an
ActivityBar study as well as any other analysis technique, trading strategy, or function.

AB_GetZoneLow(Side)

AB_High

162 Writing ActivityBar Studies CHAPTER 3
Example:
The following statements use a While loop to traverse all the possible cells:

Value1 = AB_High;

While Value1 > AB_Low Begin

 { EasyLanguage Instruction(s) }

 Value1 = Value1 - AB_GetRowHeight;

End;

First, we use AB_High to obtain the highest price at which a cell is drawn, and we
assign this value to Value1. In each iteration of the While loop, we subtract the value
equal to one row (which we obtain using AB_GetRowHeight). The loop continues as
long as Value1 is greater than the lowest price on the bar at which a cell is drawn.

This reserved word returns a numeric value representing the lower of two values: the
lowest price of the bar on which the ActivityBar study is applied, or the lowest price
on the bar at which a cell is drawn.

Syntax:
AB_Low

Parameters:
None.

Notes:
If no cells are drawn, a value of zero (0) is returned. To store the resulting value, you can
assign this reserved word to a numeric variable. You can use this reserved word in an
ActivityBar study as well as any other analysis technique, trading strategy, or function.

Example:
The following statements use a While loop to traverse all the possible cells:

Value1 = AB_Low;

While Value1 < AB_High Begin

 { EasyLanguage Instruction(s) }

 Value1 = Value1 + AB_GetRowHeight;

End;

First, we use AB_Low to obtain the lowest price at which a cell is drawn, and we assign
this value to Value1. In each iteration of the While loop, we add the value equal to one
row (which we obtain using AB_GetRowHeight). The loop continues as long as Value1
is less than the highest price on the bar at which a cell is drawn.

AB_Low

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 163
Other Reserved Words Related to ActivityBar Studies
The following is a list of reserved words you can use when writing ActivityBar studies.

This reserved word is a data alias used to reference the hidden data stream used by the
ActivityBar study. When you want to refer to the ActivityBar data stream, and the
reserved word that you are using is not an ActivityBar-related reserved word (thereby
referencing the ActivityBar study data stream by default), you must use this data alias.

Syntax:
... of ActivityData

Parameters:
None.

Notes:
The reserved word Of is used with ActivityData to make it easier to read.

Example:
The following statement calculates the average of the last 10 closing prices of the
ActivityBar study data stream. For instance, assume the ActivityBar study uses a data
interval of 30 minutes and is applied to a daily chart. In this case, the statement
calculates the average of the last ten 30-minute bars:

Value1 = Average(Close, 10) of ActivityData;

It can be very useful to know when the ActivityBar study is being called for the last
trade of a particular bar, or when the ActivityBar study is being read for a trade ‘inside
the bar’. This reserved word obtains this information.

Syntax:
BarStatus(DataNum)

Parameters:
DataNum is a numeric expression representing the data stream that is being evaluated,
and can be between 1 and 50, inclusive.

Notes:
This reserved word will return one of four possible values:

2 = the closing tick of a bar
1 = a tick within a bar
0 = the opening tick of a bar
-1 = an error occurred while executing the reserved word

ActivityData

BarStatus(DataNum)

164 Writing ActivityBar Studies CHAPTER 3
Example:
The following statements reset the numeric variable Value1 to 0 when the bar to which
the ActivityBar study is applied is closed:

If BarStatus(1) = 2 Then

 Value1 = 0

Else

 Value1 = Value1 + 1;

This reserved word is used with the other ActivityBar reserved words to specify the
side of the ActivityBar you want to reference. It specifies that you are referencing the
left side of the bar.

Syntax:
LeftSide

Parameters:
None.

Example:
The following statement obtains the number of cells on the left side of a bar, for the
row corresponding to the closing price:

Value1 = AB_GetNumCells(Close of Data1, LeftSide);

This reserved word is used with the other ActivityBar reserved words to specify the
side of the ActivityBar you want to reference. It specifies that you are referencing the
right side of the bar.

Syntax:
RightSide

Parameters:
None.

Example:
The following statement obtains the number of cells on the right side of a bar, for the
row corresponding to the open price:

Value1 = AB_GetNumCells(Open of Data1, RightSide);

LeftSide

RightSide

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 165
ActivityBar Related Functions
When creating ActivityBars, the following functions will be useful.

This function adds cells to a price range of the current bar starting at LowValue going
to HighValue.

Syntax:
AB_AddCellRange(HighValue, LowValue, Side, String, Color, AB_Value)

Parameters:
HighValue and LowValue are numeric expressions that determine the High and Low value,
respectively, of the column of cells. Side is an integer that represents which side of the price
bar to add the cells. String is the single character to place within the cells, Color is an inte-
ger or EasyLanguage color for the cells and ABValue is the value assigned to each new cell.
Example:
The following statement will add a number of blue cells with a "+", from the high to the
low. The assigned value of the cells will be 0:

AB_AddCellRange(High, Low, RightSide, "+", Blue, 0);

This function will return -1 if the LowValue and/or HighValue are invalid, and 1 if the
drawing of cells was successful. For the Side input, RightSide or LeftSide can be used,
or the integer values 1 or -1, respectively.

This function specifies the color of ActivityBar cells based on a user-defined interval.

Syntax:
AB_NextColor(MinuteInterval)

Parameters:
BStatus is a numeric expression used to determine if an ActivityBar is complete.
MinuteInterval is the number of minutes that make up each cell color interval, and ABInter-
val is the type of bar interval on which the ActivityBar is based.
Example:
The following statement will change the EasyLanguage numeric equivalent of a color ev-
ery 10 minutes for the cells that are added to the ActivityBar during that period:

Value1 = AB_NextColor(10);

The MinuteInterval input must be equal to or less than the BarInterval of the
ActivityData. If the MinuteInterval input exceeds the BarInterval of the ActivityBar,
only a single color will be displayed.

If the total number of intervals for a given ActivityBar exceeds 16 (the number of
available colors), the colors will repeat the same rotation.

AB_AddCellRange(HighValue, LowValue, Side, String, Color, AB_Value)

AB_NextColor(MinuteInterval)

166 Writing ActivityBar Studies CHAPTER 3
This function specifies the letter that is placed within the cells of an ActivityBar, based
on a user-defined interval.

Syntax:
AB_NextLabel(MinuteInterval)

Parameters:
MinuteInterval is the number of minutes that make up each cell letter interval.

Example:

The following statement will change the letter contained in each cell every 10 minutes, for
the cells that are added to the ActivityBar during that period:

Value1 = AB_NextLabel(10);

The MinuteInterval input must be equal to or less than the BarInterval of the
ActivityData. If the MinuteInterval input exceeds the BarInterval of the ActivityBar,
the same character will be displayed in all cells. This function does not affect the color
of the cells, only the string contents.

If the total number of intervals for a given ActivityBar exceeds 36 (the number of
letters A-Z, plus numeric characters 0-9), the characters will repeat the same rotation.

This function returns the price at which the Mode row occurred in the current bar.

Syntax:
AB_ModePrice(Side, Type, oModeCount, oModePriceValue)

Parameters:

Side determines the side of the ActivityBar on which the Mode will be calculated.
Type determines either the largest or smallest mode to indicate (>= 0 for largest, < 0
for smallest). oModeCountValue passed by reference that reflects the mode Count.
oModePriceValue passed by reference that reflects the mode Price.
Example:
The following statement will assign to Value1 the price at which there were more cells on
both sides of the bar:

Value1 = AB_Mode(2, 1, oModeCountValue, oModePriceValue);

The Side input can be replaced by either RightSide (or 1), LeftSide (or -1) or 2
(representing both sides).

This function calculates and returns the row height to be used for an ActivityBar.

AB_NextLabel(MinuteInterval)

AB_Mode(Side, Type, oModeCount, oModePriceValue)

AB_RowHeightCalc(ApproxNumRows, RangeAvgLength)

EasyLanguage for TradeStation 6 Writing ActivityBar Studies 167
Syntax:
AB_RowHeightCalc(ApproxNumRows, RangeAvgLength)

Parameters:
ApproxNumRows represents the approximate number of cell rows that are desired for an
ActivityBar. RangeAvgLength is the number of bars used in the calculation of the average
range.
Example:
The following statement approximates that there will be 10 rows for each ActivityBar,
based on the average range of the last three bars:

Value1 = AB_RowHeigthCalc(10, 3);

AB_RowHeigthCalc uses a calculation of the average range divided by the Proximity
input to determine what the row height should be set to. As a result of this calculation,
the number of rows on each ActivityBar will be likely to vary. If the result of the
AB_RowHeigthCalc function is smaller than the minimum movement of the symbol,
the minimum movement value is returned.

If either ApproxNumRows or RangeAvgLength is set to zero, the function will return
.125.

This function returns the standard deviation of the ActivityBar cells.

Syntax:
AB_StdDev(Multiplier, Side)

Parameters:
Multiplier is a numeric expression representing the number of standard deviations to cal-
culate. Side determines the side of the ActivityBar on which to calculate.

Example:
The following statement will assign to Value1 two standard deviations of the cells drawn
on the left side of the bar:

Value1 = AB_StdDev(2, LeftSide);

The Side input can be replaced by either RightSide (or 1), LeftSide (or -1) or 2
(representing both sides).

AB_StdDev(Multiplier, Side)

168 Writing ActivityBar Studies CHAPTER 3

C H A P T E R 4

EasyLanguage and Custom DLLs

EasyLanguage enables you to use functions residing in dynamic-link libraries (written in
C or C++) in your trading strategies, analysis techniques, and functions. This means that
in addition to all the EasyLanguage reserved words and functions, you also have at your
disposal any function in a DLL that is written in C or C++.

TradeStation Technologies, Inc. provides an EasyLanguage DLL Extension Kit, which
consists of four files and detailed documentation. This chapter introduces you to the kit
and discusses the use of DLL functions with EasyLanguage.

This is an advanced topic and this chapter assumes you know C or C++ as well as how
to create a Windows DLL file.

In This Chapter

Defining a DLL Function 170

Using Functions from DLLs 173

Keeping Track of Analysis Techniques174

More About the EasyLanguage DLL
Extension Kit.. 177

170 Defining a DLL Function CHAPTER 4
Defining a DLL Function
Before you can call a DLL function from EasyLanguage, you must declare the DLL using
a DLL Function Declaration statement.
Syntax:
DefineDLLFunc: “DLLNAME.DLL”, Return Type, “FunctionName”,

Parameters ;

DLLNAME.DLL is the name of the DLL where the function resides, Return Type is the type
of expression the function will return, FunctionName is the name of the function as defined
in the DLL, and Parameters is the list of parameters expected by the function (each param-
eter separated by a comma).

It is very important to remember that 32-bit DLLs use case-sensitive exported functions de-
clared using _cdecl, _ _stdcall , or fastcall. For DLLs to be compatible with EasyLanguage,
exported functions should be created using all uppercase letters and be declared as _stdcall.
These exported functions must be listed within the EXPORTS section of the DLL’s .DEF
file. Using “_declspec (dllexport)” from the function’s prototype is not sufficient for
EasyLanguage to locate a DLL’s exported functions.

For example, the following statement declares a function called MessageBeep which
resides in the DLL called USER32.DLL. It returns a boolean (true/false) value, and it
expects one parameter, int.

Example:

// C/C++ function prototype

Bool __stdcall MESSAGEBEEP(int nValue);

{Corresponding Definition in EasyLanguage code...}

DefineDLLFunc: “USER32.DLL”, bool, “MessageBeep”, int;

Data Types
EasyLanguage supports a number of valid data types that may be used to send and
receive information to functions contained in DLLs. Following is a list of the data types
supported by EasyLanguage:

Fundamental Data Types:

BYTE 1 byte integer data type.
char 1 byte integer data type.
int 4 byte signed integer data type.
WORD 2 byte unsigned integer data type.
long 4 byte signed integer data type.
DWORD 4 byte unsigned integer data type.

EasyLanguage and Custom DLLs Defining a DLL Function 171
Variants:

Pointer Types:

All pointers are 32-bit pointers and EasyLanguage treats each of them in the same manner.

Also, it is very important to remember that all values in EasyLanguage are floats, except
for the Open, High, Low and Close values, which are integers. To manipulate these prices,
you will want to send to the function the price scale of the symbol being plotted.

For example, if a stock has a price scale of 1/1000 and the last price was 105.125, this price
will be sent to a DLL as 105125. For the DLL to know how to read this price, you need to
send the value in the reserved word PriceScale, which in this case, returns a value of 1000.

Using Pointer Data Types
Pointer data types are designed to pass the memory addresses of and data point to a DLL
function. All pointers used in EasyLanguage are treated as 32-bit pointers. To obtain the
pointer of any data element in EasyLanguage, the user must precede the data element with
an ampersand (&).

For example, in order to refer to the address of the open, high of one bar ago and the value
of variable value1 of two bars ago you would use the following expressions:

EasyLanguage currently supports addresses for the following data objects:

float 4 byte floating point data type.
double 8 byte floating point data type.
BOOL 4 byte boolean data type.

UNSIGNED LONG Same as DWORD.
VOID Means “No returned value”.

LPBYTE Pointer to a BYTE.
LPINT Pointer to an int.
LPWORD Pointer to a WORD.
LPLONG Pointer to a LONG.
LPDWORD Pointer to a DWORD.
LPFLOAT Pointer to a float (in C++ float FAR).
LPDOUBLE Pointer to a double (in C++ double FAR).
LPSTR Pointer to a char.

&Open Address of the open price of the current bar.
&High[1] Address of the high price of the previous bar.
&Value1[2] Address of the Value1 variable of two bars ago.

172 Defining a DLL Function CHAPTER 4
All Date, Time, Open, High, Low, Close, Volume, and OpenInt values.

All true/false and numeric variables including predefined variables.

All true/false and numeric arrays.

Text strings are passed by address as a default when the LPSTR parameter type is used. Do
not change the size of the passed string within your DLL, as this can cause unpredictable
results.

The following example uses the correct syntax for including a pointer data type as one of
the parameters sent to a function from a DLL in a statement.

DefineDLLFunc: “C:\UserDLL\MyLib.DLL”,int,“MyFunc”,LPLONG;

If MyFunc(&Close) > 0 Then

 Buy next bar at market;

It is very important to remember that pointers cannot be correctly assigned to a variable or
an array element. Because neither a variable nor an array element has the necessary accu-
racy to hold a pointer, you should not try to store a pointer for later use.

Important: The following example is prohibited in the current version of
EasyLanguage as it produces an unpredictable result when Value1 is referenced at a
later time.

Value1 = &Open;

Also, do not assume that there is any relationship between two memory addresses. For ex-
ample, do not assume &Open[1] is equal to &Open[0] plus 4. You should always use the
provided ELKIT32 Functions to perform pointer calculations. See “EasyLanguage Tool
Kit Library” on page 263.

Before accessing the values of EasyLanguage user defined variables passed by address, you
must pass the address to a pointer variable using the FindAddress_Var function before you
can access the value contained in that address.

You do not have direct access to the value contained in the address when you simply pass
the pointer to a DLL function. You must use FindAddress_Var first before you can access
and manipulate the variable’s value. For example:

// Correct way to access EasyLanguage var values passed

by address...

// Sample C code:

float __stdCall MYVAR (LPFLOAT lpVar, int nOfs, DWORD

dwStartAddr, DWORD dwVarSaze) {

float fTmp;

EasyLanguage and Custom DLLs Using Functions from DLLs 173
fTmp = *lpMyFloat;

// At this point, fTmp mya be calculated before return-

ing...

fTmp += 1; // Add one to fTmp....

return fTmp;

}

{Sample EasyLanguage Code}

DefineDLLFunc: "C:\UserDLL\MyLib.DLL", float, "MYVAR",

LPFLOAT, int, DWORD, DWORD;

Var: MyTestVar(0), MyStart(0), MySize(0);

MyStart = VarStartAddr(MyTestVar);

MySize = VarSize(MyTestVar);

If CurrentBar = 1 then begin

 print("MyTestVar before passing = ", MyTestVar:0:0);

 MyTestVar = MYVAR((LPFLOAT)&MyTestVar,(int) 0,

(DWORD)MyStart, (DWORD)MySize);

 print("MyTestVar after passing = ", MyTestVar:0:0);

 { You will notice that 1 was added to MyTestVar...}

end;

Using Functions from DLLs
Once it is defined using a DefineDLLFunc statement, a DLL function can be called from
EasyLanguage in much the same way as any other EasyLanguage function is used. A DLL
function can be called within an expression or as a distinct statement if the return value is
not used. To call a DLL function, the user must specify the function name and enclose all
parameters within parenthesis. If multiple parameters are used, they must be separated by
commas.

174 Keeping Track of Analysis Techniques CHAPTER 4
For example, in order to use a function called MessageBeep, which is included in
USER32.DLL the following statements can be used:

DefineDLLFunc: “USER32.DLL”,bool,“MessageBeep”,int;

If Open > Close Then

 MessageBeep(0);

A second example follows:

DefineDLLFunc: “MYLIB.DLL”,int,“MyAverageFunc”, multiple;

Value1 = MyAverageFunc(“Open = ”,(LONG)Open);

The return value of the function MyAverageFunc is assigned to Value1. Notice the data
type specifier (LONG) is included before the second parameter's value. This specifier is
necessary because MyAverageFunc declares multiple parameter fields. In this instance, a
data type specifier must precede each parameter. The exception to this rule is when a text
string is used as a parameter of a DLL function as in the second example. With this excep-
tion in mind, we know that the data type must be LPSTR. Therefore, no data type specifier
is needed, even when MULTIPLE is used. This is why there is no data type specifier before
the string “Open =”.

Keeping Track of Analysis Techniques
We have introduced a mechanism by which a custom DLL can keep track of all analysis
techniques making calls to that DLL. This allows custom DLLs to know when they are add-
ed or removed from a calculation-stream. This feature is especially useful to those devel-
opers needing to allocate storage for each study using the DLL, and to free the DLL when
the study is turned off or deleted from a chart.

Implementation of this mechanism is very simple for the DLL author. You can keep track
of your DLL by exporting three additional functions. You can choose to export one, two,
three, or none of the functions, however, you cannot use this feature without adding at least
one of the functions to your DLL.

The three function-prototypes are:

void __stdcall Dll_Add(DWORD dwIdentifier);

void __stdcall Dll_Context(DWORD dwIdentifier);

void __stdcall Dll_Free(DWORD dwIdentifier);

Each function contains a unique dwIdentifier across a study loaded in memory for a single
chart.

Note: You must export these functions via the EXPORTS section of your DLL's ".def
file". If you do not follow this procedure, you will not be able to track your analysis

EasyLanguage and Custom DLLs Keeping Track of Analysis Techniques 175
techniques. Also, these functions are case-sensitive: Dll_Add is not the same as
DLL_ADD.

Example:
1. Create a PaintBar called TestPB calling a UserFunction FuncDll.

2. TestPB calls a function in your DLL called Bar.

3. FuncDll calls a function in your DLL called Foo.

4. Add TestPB to two chart windows.

5. Add TestPB to the first chart window again.

6. You will have a unique dwIdentifier values for each analysis technique (3
in total).

7. The dwIdentifier is the same value within the context of the UserFunction
called from the PaintBar because the UserFunction and PaintBar share the
same unique identifier.

Dll_Add is called when the user adds an indicator to the chart or turns the status to "on" in
the Format Analysis Technique dialog box. Dll_Add can use the passed identifier to keep
a list of analysis techniques calling it. Dll_Add can provide added functionality such as
memory allocation as well as initiate values for a new study.

Syntax:

void __stdcall Dll_Add(DWORD dwIdentifier);

Parameters:
dwIdentifier is a unique identifier provided by EasyLanguage.
Notes:
In general, Dll_Add and Dll_Free are called once for every call to a different function in
each analysis technique. However, EasyLanguage only assigns one dwIdentifier per anal-
ysis technique. This means that Dll_Add and Dll_Free may be called multiple times with
the same dwIdentifier.

Example:
1. Create a Study S and 2 User Functions: F1, F2.

2. You have 2 functions within your DLL: DF1, DF2.

3. F1 calls DF1 twice.

4. F2 calls DF1 and DF2 (once each).

5. S calls DF1, F1, and F2.

6. Apply S to a chart.

Dll_Add will be called 4 times with the same dwIdentifier.

Dll_Add

176 Keeping Track of Analysis Techniques CHAPTER 4
1 (S contains DF1) + 1 (F1 contains DF1 (twice)) + 2 (F2 contains DF1 and DF2) = 4

Upon deletion of S from chart, Dll_Free will also be called 4 times (again, same dwIdenti-
fier).

Dll_Context is immediately called prior to any of your DLL's other functions being called
in an EasyLanguage study. Dll_Context allows you to set a Global identifier in your DLL
so that all DLL functions know the context (unique identifier) it is currently executing. This
allows you to use the correct memory block possibly allocated during your Dll_Add func-
tion. If you plan to do nothing during the Dll_Context phase, we recommend not exporting
Dll_Context as it would be called immediately before each DLL function exported with
your DLL causing a slight increase in processing time.
Syntax:

void __stdcall Dll_Context(DWORD dwIdentifier);

Parameters:
dwIdentifier is a unique identifier provided by EasyLanguage.

Dll_Free is called when the status of an analysis technique using the DLL is turned off.
This can due to the user turning the analysis technique off, deleting the analysis technique
from the chart, closing the chart window, or a runtime error caused by the analysis tech-
nique. Dll_Free should free any memory allocated to the same unique identifier. Dll_Free
can also decrement the reference-count keeping track of the number of studies simulta-
neously using the DLL.

Syntax:

void __stdcall Dll_Free(DWORD dwIdentifier);

Parameters:
dwIdentifier is a unique identifier provided by EasyLanguage.
Notes:
In general, Dll_Add and Dll_Free are called once for every call to a different function in
each analysis technique. However, EasyLanguage only assigns one dwIdentifier per anal-
ysis technique. This means that Dll_Add and Dll_Free may be called multiple times with
the same dwIdentifier.
Example:

1. Create a Study S and 2 User Functions: F1, F2.

2. You have 2 functions within your DLL: DF1, DF2.

3. F1 calls DF1 twice.

4. F2 calls DF1 and DF2 (once each).

Dll_Context

Dll_Free

EasyLanguage and Custom DLLs More About the EasyLanguage DLL Extension Kit 177
5. S calls DF1, F1, and F2.

6. Apply S to a chart.

Dll_Add will be called 4 times with the same dwIdentifier.

1 (S contains DF1) + 1 (F1 contains DF1 (twice)) + 2 (F2 contains DF1 and DF2) = 4

Upon deletion of S from chart, Dll_Free will also be called 4 times (again, same dwIdenti-
fier).

More About the EasyLanguage DLL Extension Kit
The EasyLanguage DLL Extension Kit consists of four files:

ELKIT32.DLL

ELKIT32.H

ELKITVC.LIB (for use with VC++ only)

ELKITBOR.LIB (for use with Borland C++ Builder only)

These files are located in the \TradeStation\Program directory.

The EasyLanguage Toolkit Library (ELKIT32.DLL) is a dynamic-link library that pro-
vides useful functions that can be called from any user DLL. It is commonly used to find
the address of an offset of an EasyLanguage data object from within a user DLL.

178 More About the EasyLanguage DLL Extension Kit CHAPTER 4

EasyLanguage Syntax Errors 179
A P P E N D I X A

EasyLanguage Syntax Errors

Syntax errors are produced when verifying an EasyLanguage statement that is not under-
stood or expected by the PowerEditor. Following is a list of all syntax errors and their de-
scription, listed by error number. Each entry includes the description of the error,
probable causes of the error, and examples of the correct and incorrect syntax for the
offending statement or instruction (where applicable).

61 "Word not recognized by EasyLanguage."
This error is displayed whenever a word is not recognized by the PowerEditor. For exam-
ple, if it is not an EasyLanguage reserved word; EasyLanguage function, or a declared user
defined variable, array, or input name.
62 "Invalid number."
The PowerEditor displays this message whenever it finds a typographical error in a num-
ber. For example, if a letter is inserted by mistake in a number, the number will be high-
lighted and this error will be displayed. An example of an invalid number is 100.b4.
63 "Number out of range."
The PowerEditor displays this error whenever it finds a number that is outside the support-
ed range (a number which is too big). The following statement will produce this error:

Value1 = ;

65 "Invalid variable name."
The PowerEditor displays this error whenever it finds an invalid name in an variable dec-
laration statement. Variable names cannot start with a number nor any special character
other than the underline (_).

For example, this error will be generated when the following statement is verified:

Variable: (0);

66 "Invalid input name."
The PowerEditor will display this error whenever it finds an invalid name in a input dec-
laration statement. Input names cannot start with a number nor any special character other
than the underline (_).

For example, this error will be generated when the following statement is verified:

Input: (0);

99999999999999999999

$MyVariable

$MyInput

180 APPENDIX A
70 "Array size cannot exceed 2 billion elements."
Arrays can have up to 2 billion elements. The number of elements is calculated by multi-
plying all the dimensions of the array. For example, an array declared using the following
statement will have 66 elements:

Array: MyArray[10,5](0);

This arrays will have rows 0 through 10 and columns 0 though 5; in other words, 11 rows
and 6 columns. The resulting number from multiplying the dimensions of the array can’t
exceed 2 billion.
74 "Invalid array name."
The PowerEditor displays this error whenever it finds an invalid name in an array decla-
ration statement. Array names cannot start with a number nor any special character other
than the underline (_).

For example, this error will be generated when the following statement is verified:

Array: [10](0);

90 "The first jump command must be a begin: (\\hb,\\pb,\\wb)"
This error is displayed when the PowerEditor finds an end jump command without a begin
jump command in a text string. The end jump commands are:

\he

\pe

\we

Before these commands, a begin jump command must be used.

Note: when specifying a file name for the Print() or FileAppend() words, files that start
with any of the jump commands will produce this error. So a file name “c:\hello.txt” will
produce this error as part of the name \he.
91 "You cannot nest jump commands within other jump commands."
Jump commands are used in commentary-related text string expressions to highlight
words, and create links to the on line help. Jump commands cannot be nested; that is, there
cannot be multiple starting jump commands without having matching end jump com-
mands.

$MyArray

EasyLanguage Syntax Errors 181
92 "You must terminate all jump commands with ends (\\he,\\pe,\\we)"
This error is displayed when the PowerEditor finds a begin jump command without a end
jump command in a text string. The begin jump commands are:

\hb

\pb

\wb

After these commands, an end jump command must be used.

Note: when specifying a file name for the Print() or FileAppend() words, files that start
with any of the jump commands will produce this error. So a file name “c:\hello.txt” will
produce this error as part of the name is \he.
151 "This word has already been defined."
User defined words (such as variables, arrays, and inputs) need to have unique names. This
error is generated when a user defined word is defined more than once, such as in the fol-
lowing example:

Input: vac(10);

Variable: (0);

154 "=, <>, >, >=, <, <= expected here."
This error is displayed when the PowerEditor evaluates complex true/false expressions
and it finds an error within the expression.

Condition1 = Condition2 = Close

The intention of this statement was to assign a complex true-false value to the variable
Condition1, by using Condition2 and a comparison that involves the Close. A
corrected version would look like this:

Condition1 = Condition2 AND Open = Close;

155 " ’(’ expected here."
The left parenthesis was expected before the highlighted word; for example, if you are us-
ing a function that requires parameters, and no parameters are listed.

Value1 = Average 10;

In this example, the highlight signifies that a parenthesis was expected before the ‘+’
sign.

vac

;

+

182 APPENDIX A
156 " ')' expected here"
The right parenthesis was expected after the highlighted word; for example, if you are us-
ing a function that requires parameters, you must enclose them in parentheses.

Value1 = Average(Close, 10

Here, the highlight signifies that a closing parenthesis was expected before the’;’
157 "Arithmetic (numeric) expression expected here."
This error is displayed whenever the PowerEditor is expecting a number or a numeric ex-
pression and it finds a true-false expression, string value, or any other keyword that does
not return a numeric expression. For example, the Average() function expects two numeric
expressions, so the following:

Value1 = Average(, 10);

generates an error since Condition1 is a true-false expression.
158 "An equal sign '=' expected here."
This error is displayed if the equal sign is omitted when assigning a value to a variable,
array, or function (writing an assignment statement).

For example, the following statement will cause an error:

Value1 ;

and would be corrected by adding an equal sign, as in:
Value1 = 10;

159 "This word cannot start a statement."
Not all words can be used to start a statement. For example, the data word Close cannot
be used to start a statement. Usually, reserved words that generate some action are used to
start statements such as Buy, Plot1, or If-Then.
160 "Semicolon (;) expected here."
All EasyLanguage statements must end with a semicolon. Whenever the PowerEditor
finds a word or expression that can be interpreted as a new line, it will place the cursor
before this expression and show this error. For example, the following statements will pro-
duce this error:

Value1 = Close + Open

Buy Next Bar at Value1 Stop;

Given that the word Buy is always used at the beginning of a statement to place a trading
order, a semicolon is required after the Open.

;

Condition1

10

|

EasyLanguage Syntax Errors 183
161 "The word THEN must follow an If condition."
This error is displayed whenever the word Then is omitted from a If-Then statement. The
word Then must always follow the condition of the If-Then statement. The correct syntax
for an If-Then statement is:

If Condition1 Then {any operation}

162 "STOP, LIMIT, CONTRACTS, SHARES expected here."
This error is displayed by the PowerEditor if it finds a numeric expression following a
trading verb without including one of the words listed above. A numeric expression can
be used in a trading order to determine the number of shares (or contracts) and/or to spec-
ify the price of the stop or limit order. For example:

Buy Next Bar at Low - Range

is incorrect because it does not include a trading verb after the price Range. To be
correct, you could add the word Stop or Limit, as in:

Buy Next Bar at Low - Range Stop;

163 "The word TO or DOWNTO was expected here."
This error is displayed whenever writing a For loop and the word to or downto is omitted.
The correct syntax for a For loop is:

For Value1 = 1 To 10 Begin

 {statements}

End;

165 "The word BAR or BARS expected here."
This error is displayed whenever referencing to a value of a previous bar where the word
Bar is omitted. For example, the following statement will cause this error:

Value1 = Close of 10 ;

The correct syntax is:

Value1 = Close of 10 Bars Ago;

166 "The word AGO expected here."
This error is displayed when the PowerEditor finds a reference to any expression for a
number of bars ago without using the phrase Bars Ago. For example:

Value1 = Close of 10 Bars

produces this error because the word Ago is missing. The correct syntax for this expression
is:

Value1 = Close of 10 Bars Ago;

;

Ago

;

184 APPENDIX A
167 " ’}' was expected before end of file."
In order to add comments to your EasyLanguage, it is necessary to enclose the commen-
tary text in the curly braces ‘{’ and ‘}’. An error message is displayed when a left curly
brace is found without a matching right curly brace.

{ this was written by Trader Joe

If Close > Highest(High, 10)[1] Then

 Buy Next Bar at Market;

Above, the right curly brace was omitted somewhere before the vertical cursor. In this ex-
ample a right curly brace should have been placed after the word ‘Joe’.
168 " '[' was expected here."
When declaring, assigning, or referencing array values you are required to use the squared
braces to specify the array element(s). This error is displayed if the left squared brace is
not used when working with an array.

Array: MyArray 10);

For example, here the highlight shows that a squared brace, corresponding to the declared
number of array element, is expected before the parenthesis.
169 "']' was expected here."
When working with bar offsets or arrays, the bar or array index must be enclosed in
squared braces. This message is displayed if the right squared brace is missing.

Value1 = Close[10 * 1.05

In this example, the highlight indicates that a squared bracket should be placed somewhere
before the semicolon. Note that since the PowerEditor is expecting a numeric value in the
squared braces, it places the highlight after the last character in a numeric expression.
However, in this case, the right bracket was probably intended to be placed after the num-
ber 10.
170 "Assignment to a function not allowed."
This error is displayed when you attempt to assign a value to a function. By definition, a
function is an EasyLanguage procedure that returns a value, so it is not possible to assign
a different value to a function (except when returning a value from within a function).

 = 100.1245;

In this example, the highlighted function name indicates that you cannot assign it a value.

|

(

;

Average

EasyLanguage Syntax Errors 185
171 "A value was never assigned to user function."
By definition, a function is a set of statements that return a value. This error will be dis-
played when editing or creating a function and the PowerEditor finds that no value has
been assigned to the function. A statement similar to the following must be included in
every function:

 = Value;

where MyFunction is the name of the function and Value is the expression to be returned
when the function is referenced.
172 "Either NUMERIC, TRUEFALSE, STRING, NUMERICSIMPLE, NUMERICSERIES,
TRUEFALSESIMPLE, TRUEFALSESERIES, STRINGSIMPLE, or STRINGSERIES expected."
When declaring the inputs in a function it is necessary to specify the type of each input.
This error is generated when any word or value, other than a valid input type, is used when
declaring function inputs.
174 "Function not verified."
In order for an analysis technique to verify, all functions used by the analysis technique
must be verified as well. This error is displayed if there is a function that is not verified
and you attempt to verify the analysis technique.

In order to solve this, open the function and verify it, or run “Verify All” from the Pow-
erEditor menu.
175 " ',' or ')' expected here."
This error is displayed when listing a number of elements in parentheses and a semicolon
is read before the list is finished.

Value1 = Average(Close, 10

In this case, the highlight indicates that either more parameters (separated by a comma) or
a right parenthesis were expected before the semicolon.
176 "More inputs expected here."
This error is displayed whenever referencing a function or an included strategy without
specifying enough inputs. For example:

Value1 = Average(Close ;

displays an error because only one input is specified while the Average function requires
two inputs: 1) the price to be averaged and 2) the number of bars.

MyFunction

;

)

186 APPENDIX A
177 "Too many inputs supplied."
The PowerEditor displays this error when too many inputs are supplied for a function. For
example, the Average function requires only two inputs, so the following statement will
produce this error:

Value1 = Average(Close, 10 5);

The correct syntax would be
Value1 = Average(Close, 10);

180 "The word #END was expected before end of file."
The compiler directive #END must be used to indicate the end of a group of statements
included in the alert or commentary only section of an analysis technique. The alert and
commentary compiler directives will allow certain instructions to be executed only when
the alert or commentary is enabled.
181 "There can only be 10 dimensions in an array."
Arrays can have up to 10 dimensions. The correct syntax for creating a multi-dimensional
array is:

Array: MyArray[10,10,10](0);

where this statement creates a three dimensional array of 11x11x11
183 "More than 100 errors. Verify termination."
When the PowerEditor is verifying a document for correctness, it will continue to evaluate
expressions until it finds 100 errors. These errors will be found in the error log once the
verification process is finished. If the PowerEditor finds more than 100 errors it will stop
the process and will display this message.
185 "Either HIGHER or LOWER expected here."
When specifying the execution instructions for an order in a strategy, it is possible to use
the words or Higher and or Lower as synonyms to stop and limit. This error occurs when
the word or is found in an order without the words Higher or Lower. The following is the
proper syntax for this statement:

Buy Next Bar at Low - Range or Lower;

186 "Input name too long."
Input names in any PowerEditor analysis technique can be up to 20 characters long. This
error is displayed by the PowerEditor whenever an input has a name that has more than 20
characters.
187 "Variable name too long."
Variable names can have up to twenty characters. This error is displayed whenever a vari-
able is declared with a name that contains more than twenty characters.

,

EasyLanguage Syntax Errors 187
188 "The word BEGIN expected here."
This error is generated whenever the PowerEditor is expecting a block statement. For ex-
ample, all loops require Begin and End block statements, so writing the following will
generate this error:

For Value1 = 1 To 10

 = Value10 + Volume[Value1];

The correct syntax is:
For Value1 = 1 To 10 Begin

 Value10 = Value10 + Volume[Value1];

End;

189 "This word not allowed in a strategy."
The word highlighted by the PowerEditor is not allowed in a Strategy.
190 "This word not allowed in a function."
The word highlighted by the PowerEditor is not allowed in a function. Words like Plot1,
Buy, SellShort, etc., are not allowed in functions.
191 "This word not allowed in a study."
The word highlighted by the PowerEditor is not allowed in a study. Words like Plot1, Buy,
SellShort, etc., are not allowed in studies.
192 "This word not allowed in an ActivityBar."
The word highlighted by the PowerEditor is not allowed in an ActivityBar study. Words
like Plot1, Buy, SellShort, etc., are not allowed in ActivityBar studies.
193 "Comma (,) expected here."
Commas are used to separate elements in a list; for example when declaring multiple in-
puts or variables, or when listing the parameters of a function.

This error will be generated whenever the PowerEditor finds two words, that seem to be
part of the list, which are not separated by a comma. For example, in the following:

Inputs: Price(Close) Length(10);

the comma after the first input is missing. The PowerEditor places the vertical cursor at
the location where it was expecting a comma.

Value10

|

188 APPENDIX A
195 "Matching quote is missing."
All text string expressions need to be within double quotes. This error will be displayed
whenever there are not matching quotes around a text string expression. For example, the
following statement will produce this error:

Variable: Txt(“ ”);

Txt =

because there is a missing quote to the right of the text expression. The correct syntax for
this expression is:

Variable: Txt(“ ”);

Txt = “This is an example”;

197 "Strategy not verified."
In order for a trading strategy to verify, any strategies referenced by the trading strategy
through the use of the IncludeSignal reserved word must be verified as well. This error is
displayed if you attempt to verify a trading strategy that references an unverified strategy.

In order to solve this, open the referenced strategy and verify it, or run “Verify All” from
the PowerEditor menu.
200 "Error found in function."
This error is displayed whenever verifying an analysis technique that refers to an unveri-
fied function. The only solution is to open the function, verify the function, and then return
to the analysis technique.
201 "User function cannot refer to current cell of itself."
A simple function cannot refer to the same value of a function within its calculations.
However, if defined as a series function, it can refer to a previous value of itself. For ex-
ample, the following simple function gives an error:

MyFunction = + Volume;

because the calculation refers to the current value of the function. By setting the function
Parameter to “Series”, the following becomes a valid expression that uses a function’s
previous value to accumulate the volume of the chart:

MyFunction = MyFunction[1] + Volume;

“This is an example;

MyFunction

EasyLanguage Syntax Errors 189
204 "Orders cannot be inside a loop."
EasyLanguage does not allow trading orders to be placed inside a For or While loop. If the
intention of placing an order inside a loop is to increase the number of shares or contracts
that the strategy will handle, this can still be done by placing the calculation of the number
of shares or contracts inside a loop and then using the resulting value in the order instruc-
tion after the loop is finished. For example,

While Condition1 Begin

 Value1 = <calculation of number of shares>;

End;

Buy Value1 Shares Next Bar at Market;

205 "Statement does not return a value."
This error is displayed when attempting to return a value from statements not designed
to return a value, such as those that set or change a value. For example:

Value1 = (High, Low, RightSide);

To correct this error, do not assign the expression to a variable:

AB_SetZone(High, Low, RightSide);

208 "CONTRACTS, SHARES expected here."
When writing an EasyLanguage statement to place an order, it is possible to specify how
many contracts or shares the strategy should use to open (or exit) the position. This error
will be generated by the PowerEditor whenever it finds a numeric expression after the
trading verb that is not followed by the words Stop, Limit, or Higher, or or Lower. For ex-
ample:

 100;

generates an error because it is not clear if ‘100’ is a part of the instructions to specify the
number of shares or the execution instruction (the price at which the order should be
placed). A correct statement might read:

Buy 100 Shares;

209 "Strategy name expected within quotes."
When specifying the name of an order, it must be enclosed within parentheses and double
quotes. This error is displayed if the name is missing or not correctly provided. For exam-
ple, the following statement will cause this error:

Sell From Entry (Next Bar at Market;

211 "Strategy cannot call itself."
A strategy cannot reference itself when using the IncludeSignal reserved word.

AB_SetZone

Buy

)

190 APPENDIX A
213 "Error found in strategy."
This error is displayed whenever verifying a strategy that contains the IncludeSignal re-
served word which references a strategy that is not verified. The only solution is to open
the unverified strategy, verify it, and then return to the original strategy.
214 "Colon (:) expected here."
EasyLanguage expects a colon to be used when declaring certain elements of the language
like inputs, variables, arrays, and DLLs. In order to declare a new input, the word input
should be followed by a colon, and then the list of input names. This error will be dis-
played whenever the colon is missing from this expression, for example:

Input (10);

Since there is no colon after the word ‘Input’, the word MyValue is highlighted and this
error message is displayed. To correct the error, simply add a colon after ‘Input’:

Input: MyValue(10);

215 "Cannot use next bar's price and close order in the same strategy."
EasyLanguage does not support using information from the next bar (the Date, Time, or
Open) and placing an order at the close of the current bar in the same strategy. If the in-
structions are not related, they should be written as different strategies and merged using
TradeStation StrategyBuilder.

The following produces an error because it includes a reference to the Open of Next Bar
with a Close order for This Bar (current bar):

If Open of Next Bar > Price Then Buy This Bar on Close;

217 "Function circular reference found."
A circular reference is defined as two formulas that refer to each other in their respective
calculations. This type of formula cannot be solved by EasyLanguage, so whenever a cir-
cular reference is found this error is displayed.

For example, a circular reference can happen if you have a function A, which is defined as
the value of the current bar of a function B plus 1, and the definition of the function B is
the value of the current bar of A plus 1. In order to calculate the value of function A, the
value of B is needed, but in order to calculate B, the value of A is needed. Therefore, it is
not possible to obtain the values of these functions and this error occurs.

MyValue

EasyLanguage Syntax Errors 191
220 "Cannot anchor a global exit."
The price date of the bar where an entry order was placed can be accessed from an exit by
using At$. This is only allowed when the entry order has a label and if the exit is tied to
the entry. An error will be generated if the entry is not labeled or if the exit does not specify
what entry it is attempting to close. For example, the following exit will cause this error:

If Condition1 Then

 (“MyEntry”) This Bar on Close;

Sell At$ Low - 1 Stop;

since the exit does not specify the name of a matching entry. The correct syntax is:
If Condition1 Then

 Buy (“MyEntry”) This Bar on Close;

Sell From Entry (“MyEntry”) At$ Low - 1 Stop;

223 "A simple function cannot call itself."
Historical values of simple functions are not available to EasyLanguage, so referring to
previous values of itself in its calculations is not allowed. If this is necessary, change the
function to a series.

MyFunction = [1] + Volume;

For example, if MyFunction is a simple function, the above reference to the value of
MyFunction of one bar ago is not allowed in this calculation.
224 "Strategy name already used."
The PowerEditor does not allow the reuse of a name in two different orders. It is manda-
tory that all orders have a different name. The following SellShort statement produces this
error:

If Condition1 Then

 Buy (“MyStrategy”) Next Bar at Market;

If Condition2 Then

 SellShort () Next Bar at Market;

because both orders cannot have the same name.
226 "Next bar's prices can only be used in a strategy."
The Open, Date and Time of the next bar can only be referenced from a strategy; no other
analysis has access to this information.

Buy

MyFunction

“MyStrategy”

192 APPENDIX A
227 "Default expected here."
When declaring an input in any analysis technique, you need to enclose the default value
in parentheses. This error will be shown whenever there is no default value specified (the
parentheses are empty). For example, the following is the correct syntax for declaring an
input with the default value of 15:

Input: MyInput(15);

229 "Invalid initial value."
An initial value needs to be specified when declaring a variable or array. This initial value
needs to be enclosed by parentheses and is used to 1) determine the type of the variable or
array (numeric, true-false, or text string), and 2) assign the initial value of the variable or
array on the first bar.

The correct syntax when declaring a variable is:
Variable: MyVariable(10);

where the initial value assigned to this variable is 10, which is a numeric value.
230 "Initial value expected here."
An initial value needs to be specified when declaring a variable or array. This initial value
needs to be enclosed by parentheses and is used to 1) determine the type of the variable or
array (numeric, true-false, or text string), and 2) assign the initial value of the variable or
array on the first bar.

The correct syntax when declaring a variable is:
Variable: MyVariable(10);

where the initial value assigned to this variable is 10, which is a numeric value.
231 "Function has no inputs. Parenthesis not needed."
This error is shown by the PowerEditor when parentheses are used for a function which
has no inputs. For example, the EasyLanguage function Range has no inputs, so the fol-
lowing statement:

Value1 = Range 10);

displays the error message and highlights the first parenthesis before the parameter.
232 "Matching left comment brace '{' is missing."
The PowerEditor displays this error whenever it finds a right comment brace “}” without
a matching left comment brace. In order to fix this, find the beginning of the comment text
and place a left comment brace before it. If there is no comment in your analysis technique,
then remove the right comment brace.

(

EasyLanguage Syntax Errors 193
233 "Extra right parenthesis."
When writing any type of expression or statement that requires parentheses, it is necessary
to have matching left and right parentheses. This error is displayed if there are extra right
parentheses in the expression being evaluated. For example:

Value1 = (Close + Open) /2

234 "END found without matching BEGIN."
This error is displayed whenever a block statement does not contain a matching End for
every Begin.
237 "Position Information function not allowed in a study."
Strategy position information words can only be used in strategies and functions. This er-
ror will be generated if any one of these words are found in anything other than a strategy
or function.
238 "Performance Information function not allowed in a study."
Strategy performance information words can only be used in strategies and functions. This
error will be generated if any one of these words are found in anything other than a strategy
or function.
239 "Array name too long."
Array names can have up to 20 characters. An error message will be displayed if the array
name used in the declaration statement has more than 20 characters.
240 "This strategy name does not exist."
This error is displayed whenever tying an exit to a non-existent entry name. For example,
the following strategy produces this error:

Buy (“Break”) Next Bar at Highest(High, 10) Stop;

Sell From Entry () Next Bar at Low Stop;

because the exit incorrectly refers to an entry labeled “BreakOut” which does not exist in
this strategy. Changing the entry name to “Break” will correct this error.

)

"BreakOut"

194 APPENDIX A
241 "Cannot exit from an exit strategy."
This error is displayed when an exit strategy is mistakenly tied to another exit strategy.
Exit strategies can only be tied to an entry through the use of the instruction from Entry
(“entry name”). For example, the following statements will generate this error:

If Condition1 Then

 Buy (“MyEntry”) This Bar at Close;

If Condition2 Then

 Sell (“MyExit”) This Bar at Close;

Sell from Entry () Next Bar at Lowest(Low,10) Stop;

Instead, the following statements are correct:

If Condition1 Then

 Buy (“MyEntry”) This Bar at Close;

If Condition2 Then

 Sell (“MyExit”) This Bar at Close;

Sell From Entry (“MyEntry”) Next Bar at Lowest(Low,10) Stop;

242 "Cannot BuyToCover from a buy strategy."
This error will be displayed when a short exit strategy is tied mistakenly to a long entry
strategy. Short exit strategies can be tied only to a short entry through the use of the in-
struction from Entry (“entry name”). For example, the following statements will generate
this error:

If Condition1 Then

 Buy (“MyEntry”) This Bar at Close;

BuyToCover From Entry () Next Bar at Lowest(Low,10)

Stop;

In this case, the error can be corrected by using the appropriate exit instruction, Sell:
If Condition1 Then

 Buy (“MyEntry”) This Bar at Close;

Sell From Entry (“MyEntry”) Next Bar at Lowest(Low,10) Stop;

“MyExit”

“MyEntry”

EasyLanguage Syntax Errors 195
243 "Cannot Sell from a SellShort strategy."
This error will be displayed when an long exit strategy is tied mistakenly to a short entry
strategy. Long exit strategies can be tied only to a long entry through the use of the instruc-
tion from Entry (“entry name”). For example, the following statements will generate this
error:

If Condition1 Then

 SellShort (“MyEntry”) This Bar at Close;

Sell from Entry () Next Bar at Low Stop;

In this case, the error can be corrected by using the appropriate exit instruction, BuyTo-
Cover:

If Condition1 Then

 SellShort (“MyEntry”) This Bar at Close;

BuyToCover from Entry (“MyEntry”) Next Bar at Low Stop;

244 "At$ cannot be used after the word TOTAL."
EasyLanguage does not allow the reserved word Total to be tied to reference information
from the bar of entry by using the AT$ instruction. For example, the following statement
will generate this error:

Sell 20 Shares Total From Entry (“MyEntry”) Low Stop;

247 "References to previous values are not allowed in simple functions."
Prior values of simple functions, simple variables, or simple expressions cannot be refer-
enced from within simple functions. If this is necessary for the calculation of a function
then the function must be set as series, not simple. This incorrect example:

 MyFunction = MyFunction[1] + Close;

creates an error if MyFunction is a simple function with a reference to previous values
of itself. Setting the function Properties to “Series” will correct this error.
250 "Cannot reference a previous value of a simple input."
Historical values of simple inputs in functions are not stored by EasyLanguage, so refer-
ring to previous values of them is not allowed. For example, in the following:

Input: MyVal(NumericSimple);

MyFunction = MyVal[5];

the value MyVal[5] is not allowed in this function since it includes a reference to the value
of the input of five bars ago but is declared as a NumericSimple input. If the reference to
a previous value is necessary, change the input type to series.

“MyEntry”

At$

196 APPENDIX A
251 "Variables and arrays not allowed here."
In previous product versions this error is displayed when attempting to pass variables
or arrays to series functions.

Value2 = Average(Close, Value1);

253 "Cannot reference a previous value of this input."
Historical values of simple inputs in functions are not stored by EasyLanguage, so refer-
ring to previous values of them is not allowed. For example, in the following:

Input: MyVal(NumericSimple);

MyFunction = MyVal[5];

the value MyVal[5] is not allowed in this function since it includes a reference to the value
of the input of five bars ago but was declared as a NumericSimple input. If the reference
to a previous value is necessary, change the input type to series.
258 "Variables, arrays and inputs not allowed here."
This error is displayed when a variable, array, or input is used as the initializer for an
input value, such as:

Vars: MyVar(3);

Input: MyInput();

259 "This number is too big."
The PowerEditor displays this error whenever it finds a number that is outside the support-
ed range (a number which is too big). The following statement produces this error:

Value1 = ;

260 " ’Next Bar’ can only be applied to ’OPEN’, ’DATE’ and ’TIME’."
The only prices available from the next bar that can be read from a strategy are Open,
Date, and Time. All other prices from the next bar can’t be accessed.
261 "The word 'BAR' expected here."
This error is shown whenever writing an order in a strategy where the word Bar is left out
of the expression. For example, the following:

 Next on the Close;

generates an error because Bar is missing. The correct syntax is:
Buy Next Bar on the Close;

MyVar

99999999999999999999

Buy

EasyLanguage Syntax Errors 197
262 "At market order can only be placed for the next bar."
All analysis techniques are read and executed at the end of each bar. Because of this, mar-
ket orders can only be placed for the next bar. An error will be generated whenever a mar-
ket order is placed to be filled on this bar, such as:

 This Bar at Market;

263 "Stop and limit orders can only be placed for the next bar."
This error is displayed when trying to write a stop or limit order for the current bar.
For example:

Buy This Bar at Low - Range ;

is not correct because a Limit order cannot be placed on This Bar. To be correct, the
Limit order must be on the Next Bar:

Buy Next Bar at Low - Range Limit;

264 "On close order must be placed for this bar."
Given that all instructions are read at the close of each bar, the only types of orders that
can be placed on the current bar are at the close. Whenever This Bar is included as part of
an order it may only refer to the at Close price. The correct syntax for This Bar orders is:

Buy This Bar at Close;

265 "Cannot mix next bar prices with data streams other than data1."
EasyLanguage prohibits the reference of secondary data streams in the same strategy
where references to the Date, Time, or Open of the next price are also made. If the refer-
ences to a secondary data stream and the next bar prices are not directly related, it is rec-
ommended that you write two strategies, one that uses next bar prices and a second that
references other data streams.

For example, the following statements included in one strategy are not allowed because
they reference two different data streams (Data1 by default is the first and Data2 in the
second):

If Open Next Bar > High Then

 SellShort Next Bar at Open Next Bar + Range Limit;

If Average(Close, 4) of Data2 < Average(Close, 7) of Data2 Then

 BuyToCover Next Bar at Close;

Instead, writing two different strategies, one containing the first IF-THEN statement and
another containing the second IF-THEN statement is necessary. Later these strategies can
both be included as part of the same Trading Strategy by adding them to the same Chart
Analysis window.

Buy

Limit

198 APPENDIX A
266 "Library name within double quotes expected here."
The PowerEditor displays this error when defining an external DLL function and the name
of the DLL is missing or incorrect. The first element of the list of parameters in the
DefineDLLFunc statement should be the name of the DLL library within double quotes.
The following statement will generate this error:

DefineDLLFunc: , “MyFunc”, int;

The correct syntax for this statement is:

DefineDLLFunc: “MyDLL”, int, “MyFunc”, int;

267 "DLL function name within double quotes expected here."
When defining a function from a DLL, the name of the DLL must be enclosed in double
quotes. For example, the following is a proper example of such a function definition be-
cause it includes the function name “user.dll” followed by DLL’s return type and param-
eters:

DefineDLLFunc: “user.dll”, int, “beep”;

274 "Return type of this DLL function must be specified."
When declaring a DLL function, the return type of the function must be the second param-
eter listed. Following is a correct DLL function declaration statement with the DLL’s type
int following the DLL name:

DefineDLLFunc: “MyDLL.DLL”, int, “MyFunction”, int;

276 "DLL name cannot be longer than 60 characters."
The name of the DLL used to define any function through the DefineDLLFunc statement
cannot exceed 60 characters.
277 "DLL function name cannot be longer than 65 characters."
The name of a function defined using the DefineDLLFunc statement cannot exceed 65
characters.
278 "A variable expected here."
Whenever the PowerEditor expects a variable and finds another reserved or user defined
word, it will highlight the unexpected word and give this message. An example is when a
function is expecting a variable as one of the parameters (because it is expecting to receive
the variable by reference).

int

EasyLanguage Syntax Errors 199
279 "An array expected here."
Functions can now receive arrays as parameters. If a function is expecting an array and
instead the PowerEditor finds a variable, input, or other reserved word (different than an
array), it will display this error. In the following example the function Average_a() calcu-
lates the average of a particular array, so the following will generate the syntax error:

Variable: MyVar(0);

Value1 = Average_a(, 10);

To correct this problem, you need declare MyVar as an array instead of an integer. It
should be written:

Array: MyArray[20](0);

Value1 = Average_a(MyArray, 10);

280 "TrueFalse expression expected here."
This error is displayed when the PowerEditor expects a true/false expression and finds a
numeric or text string expression instead. For example:

Condition1 = High ;

281 "Mixing data types (NUMERIC, TrueFalse, String) not allowed."
This error appears when incompatible data types are combined in a single expression.

In this example:
Value1 = 100 + “12” ;

the text string “12” cannot be directly combined with a numeric value. To resolve such a
problem, use the appropriate EasyLanguage reserved word to convert the data to a com-
patible type.

For example, use the function StrToNum to convert the text string to a numeric value:
Value1 = 100 + StrToNum(“12”) ;

283 "Strategy has no inputs. Comma not needed."
When including a strategy through the IncludeSignal keyword, the list of the inputs must
be supplied and each input must be separated by a comma. This error is displayed if the
strategy has no inputs, and an input is mistakenly included in the statement.

Following is the correct syntax of an IncludeSignal statement of a strategy with no inputs:
IncludeSignal: “My Trailing LX”;

284 "There is no such strategy."
This error is displayed by the PowerEditor whenever the strategy name referenced by an
IncludeSignal statement does not exist in the strategy library.

MyVar

200 APPENDIX A
285 "Strategy circular reference found."
A circular reference is defined as two formulas that refer to each other’s current bar value
in their respective calculations. This type of formula cannot be solved by EasyLanguage,
so whenever a circular reference is found this error is displayed.
286 "Cannot divide by zero."
This error will be displayed when dividing any numerical expression by the literal number
0. So when the following is written:

Value1 = Close / 0;

the PowerEditor will generate a syntax error because dividing by zero is a mathematical
indetermination and cannot be solved.
287 "File name expected here."
This error is displayed when using the Print statement to send information to the printer,
and an invalid file name is used for the file name. The file name should be specified as text
between double quotes. Note that a text string expression will not be accepted as a file
name in the Print statement. For example, the PowerEditor will display this error when
evaluating the following statement:

Print(File(), Date, Time, Close);

The file name needs to be text included in double quotes; for example:
Print(File(“c:\tradestation\test.txt”), Date, Time, Close);

288 "A file or directory name must be <260 characters and may not contain "/ : * ? < > |"."
Certain instructions like the Print() and FileAppend() statements require a file name. The
file name needs to be less than 260 characters long and cannot have any of the characters
listed in the error label. For example, this error will be displayed when writing:

Print(File(, Date, Time, Close);

since the ‘?’ character is not a valid character and cannot be used as part of a file name.
291 "The word 'OVER' or 'UNDER' expected here."
This error is displayed whenever using the word Cross without Over or Under when writ-
ing a true-false expression. For example, the following expression will produce this error:

Condition1 = Close Crosses ;

The correct syntax would be:
Condition1 = Close Crosses Over Open;

Value1

“c:\data?.txt”

Open

EasyLanguage Syntax Errors 201
292 "Two constants cannot cross over each other."
The PowerEditor displays this error whenever using the logical operators Crosses Over or
Crosses Under compares two constants. Since they are constants, they will never cross
each other and the statement will display an error, as in:

Condition1 = Crosses Over 15;

293 "This plot has been defined using a different name."
The value of a plot can be assigned more than once within an analysis technique but it must
always be referenced using the same name (or the name can be left out). For example, the
following statement will cause this error:

Plot1(Volume, “Vol”);

If Volume > 1000000 Then

 Plot1(Volume, , Red);

because the plot has been assigned a second name “V”. The correct way of writing this
statement is:

Plot1(Volume, “Vol”);

If Volume > 1000000 Then

 Plot1(Volume, “Vol”, Red);

295 "This plot name has never been defined."
This error is displayed whenever referencing a Plot with a different name than it was de-
fined with, or a plot that doesn’t exist. For example, the following statements will cause
this error:

Plot1(High, “H”);

Value1 = Plot1 + ;

since Plot2 has not been defined. The PowerEditor highlights the second instance of the
Plot command to indicate where the error occurred.
296 "This plot has never been assigned a value."
This error is generated when referring to the value of a plot that has not been previously
defined in the analysis technique. For example, the following statements will produce this
error:

Plot1(Average(Close,10));

If Plot1 Crosses Over Then

 Alert;

because Plot2 has not been defined.

10

“V”

Plot2

Plot2

202 APPENDIX A
297 "Server field name too long; cannot be more than 30 characters."
Server Quote fields can be up to 30 characters long. This error will be generated whenever
a server field with a name that has more than 30 characters is used.
298 "Strategy Information (for plots) function not allowed in a strategy."
None of the “Strategy Information for plots” words can be used within a strategy. These
words are designed to be used in other analysis techniques to refer to overall performance
of the strategy. However, there are strategy-specific words that can be used from the strat-
egy to refer to these figures.

These words are:

I_AvgEntryPrice

I_ClosedEquity

I_CurrentContracts

I_MarketPosition

I_OpenEquity

299 "Strategy Information function not allowed in a study."
Strategy information words (other than the strategy information for plots) can only be used
in trading strategies and functions. These words, which are listed in the EasyLanguage
Dictionary under the categories Strategy Performance and Strategy Position, can only be
used when writing trading strategies and functions.
300 "This plot has been defined with a different type."
The value of a plot can be assigned more than once but it must always be of the same type.
Plot statements can display numeric, true-false, and string expressions, but they cannot
change types within an analysis technique. For example, the following pair of Plot state-
ments are not allowed in an analysis technique because they include different data types,
where the first plot is a text string and the second a true-false value:

Plot1("This is a text string");

If Condition1 Then

 (Condition1);

302 "Different number of dimensions specified in the array than the parameter."
This error is shown when an array is passed into a function with the wrong number of di-
mensions. For example, this error will be generated if a function is expecting a single di-
mension array but is sent an array with two dimensions instead.

Plot1

EasyLanguage Syntax Errors 203
303 "Extraneous text is not allowed after the array-type parameter"
When passing an array into a function, only the array name should be used. This error is
displayed whenever any text, words, or braces are added after the array name that is passed
to a function. For example:

Array: MyArray[10](0);

Value1 = Average_a(MyArray 0], 10);

the [will be highlighted because an array index appears after the array name. The correct
syntax would be:

Array: MyArray[10](0);

Value1 = Average_a(MyArray, 10);

304 "Numeric-Array Parameter expected here."
Functions can receive arrays as parameters. If a function is expecting an array, any other
type of parameter (variable, input, or reserved word) will display this error. In the follow-
ing example:

Variable: MyVar(0);

Value1 = Average_a(, 10);

the function Average_a() requires an array on which to calculate an average and
displays this error because MyVar is not an array.

Instead, you can write:
Array: MyArray[20](0);

Value1 = Average_a(MyArray, 10);

305 "TrueFalse-Array Parameter expected here."
Functions can now receive arrays as parameters. If a function is expecting a true-false ar-
ray and, instead, the PowerEditor finds a variable, input, or other reserved word (different
than a true-false array), it will display this error. For example, a function MyTrueFalse_a()
that correctly uses true-false arrays would be written as follows:

Array: MyArray[20](False);

Variable: MyTF(False);

MyTF = MyTruefalse_a(MyArray, 10);

[

MyVar

204 APPENDIX A
306 "String Array Parameter expected here."
Functions can now receive arrays as parameters. If a function is expecting an array of text
strings and, instead, the PowerEditor finds a variable, input, or other reserved word (dif-
ferent than an array of text strings) it will display this error. For example, a function
Average_a(), which combines all the text strings that are in an array into one, should be
used as follows:

Array: MyArray[20](“ ”);

Variable: MyText(“ ”);

MyText = Average_a(MyArray, 10);

307 "The word 'Cancel' must be followed by 'Alert'."
Whenever canceling a previously enabled alert, the statement Cancel Alert needs to be
used. This error is displayed whenever using the word Cancel without the word Alert.
314 "This word is only allowed in ActivityBar studies."
The words that are used to set the properties and draw ActivityBars are only allowed from
ActivityBars and are not allowed in any other study or strategy.
323 "’Value-type inputs’ may not be passed into ’reference-type inputs’."
Functions can receive array and variable parameters by reference or by value. However,
if a function receives a variable or array by value, it is not possible to pass the parameter
to a second function by reference. If an input of a function needs to be passed by reference
to another function, it must also be declared as a reference input.
325 "Only an array, variable, or reference-input is allowed here"
Functions can receive arrays as parameters. If a function is expecting an array, any other
type of parameter (variable, input, or reserved word) will display this error. In the follow-
ing example:

Variable: MyVar(0);

Value1 = Average_a(, 10);

the function Average_a() requires an array on which to calculate an average and
displays this error because MyVar is not an array.

Instead, you can write:
Array: MyArray[20](0);

Value1 = Average_a(MyArray, 10);

MyVar

EasyLanguage Syntax Errors 205
340 "This word is only allowed when defining array-type inputs."
This error is displayed when creating a function input using any input-type (such as
NumericArray, NumericArrayref) without fully qualifying the input with braces. For
example, this creates an error:

Input: MyInput();

because it does not include the array length parameter in brackets after the array name.
The correct syntax would be:

Input: MyInput[n](StringArrayRef);

341 "An array input word (NUMERICARRAY, STRINGARRAY, TRUEFALSEARRAY,
NUMERICARRAYREF, STRINGARRAYREF, TRUEFALSEARRAYREF) was expected here."
When declaring inputs that are meant to receive an array, one of the above words are ex-
pected as the input type. For example, this error will be displayed when declaring an input
for a function using the following statement:

Input: MyArray[M,N]();

since the reserved word Numeric is not valid for declaring arrays. However, the following
will verify successfully:

Input: MyArray[M,N](NumericArray);

342 "This word can only be used in a PaintBar study."
This error occurs when you use the reserved word PlotPaintBar when writing anything
other than a PaintBar study.
396 "This statement cannot specify an odd number of plots."
This error is displayed when using the PlotPaintBar statement and specifying an odd num-
ber of plots. There are two possible uses for this statement, either specifying only a high
and low value, or specifying high, low, open, and close markers. The correct syntax for
the PlotPaintBar statement follows:

PlotPaintBar(High, Low, “PB”);

or
PlotPaintBar(High, Low, Open, Close, “PB”);

StringArrayRef

Numeric

206 APPENDIX A
403 "Cannot implicitly convert String to Numerical"
Whenever the PowerEditor expects a numerical expression, and, instead, finds a text string
expression, it will highlight the text string expression and display this message.

For example, the following statement will produce this error:
Variable: MyNumber(“55”);

Value1 = Close + ;

Instead, the following expression accomplishes the expected result because it first uses the
keyword StrToNum() to convert a text string expression to a numeric value:

Variable: MyNumber(“55”);

Value1 = Close + StrToNum(MyNumber);

404 "Cannot implicitly convert String to TrueFalse"
Whenever the PowerEditor expects a true-false expression and, instead, finds a text string
expression, it will highlight the text string expression and will display this message.

For example, the following statement will produce the error:
Input: Text1(“Yes”), Text2(“No”);

Condition1 = ;

because the input “Text1” was declared as a text value and cannot be assigned the true-
false variable Condition1. Instead, the following statement is correct:

Input: Text1(“Yes”), Text2(“No”);

Condition1 = (Text1 = Text2);

Notice that while both Text1 and Text2 are string values, the result of the comparison
is a true-false value which is properly assigned to a true-false variable.

MyNumber

Text1

EasyLanguage Syntax Errors 207
405 "Cannot implicitly convert TrueFalse to String"
Whenever the PowerEditor expects a text string expression and, instead, finds a true-false
expression, it will highlight the true-false expression and display this message. In this ex-
ample, Condition1 is a true-false variable and cannot be directly combined with a string:

FileAppend(“Output.txt”, “This is a text string” +);

Instead, the following expression corrects the problem by creating a string value based on
whether Condition1 is true or false:

Variable: txt(“ ”);

If Condition1 Then

 txt = “true”

Else

 txt = “false”;

FileAppend(“Output.txt”, “This is a text string” + txt);

406 "Cannot implicitly convert Numerical to String"
Whenever the PowerEditor expects a text string expression and, instead, finds a numerical
expression, it will highlight the numerical expression and will display this message.

For example:

FileAppend(“Output.txt”, “This is text” +);

displays an error when a numeric expression is found. Instead, the following expression
will accomplish the expected results because it uses the keyword NumToString() to
convert a numerical expression to a string:

FileAppend(“Output.txt”, “This is text” + NumToStr(Value1, 2));

407 "Cannot implicitly convert TrueFalse to Numerical"
Whenever the PowerEditor expects a numerical value and, instead, finds a true-false ex-
pression, it will highlight the expression and will display this message.

For example, the following statement will produce this error because the Condition1 value
is a true-false variable and cannot be assigned to the numeric variable Value1:

Value1 = ;

Condition1

Value1

Condition1

208 APPENDIX A

408 "Cannot implicitly convert Numerical to TrueFalse"
Whenever the PowerEditor expects a true/false expression and, instead, finds a numerical
expression, it will highlight the numerical expression and will display this message. For
example, the following statement produces an error because the reserved word Open is a
numeric value and not a true/false expression:

Condition1 = ;

Instead, assign the numeric value Open to the numeric variable Value1:

Value1 = Open ;

Or, change the statement such that it is a comparison. For example:
Condition1 = Open > Close;

Notice that while both Open and Close are numerical values, the result of the
comparison is a true/false value, which is properly assigned to a true/false variable.
409 "String expression expected here"
This error is displayed whenever the PowerEditor is expecting a string expression and, in-
stead, it finds a numeric or true-false expression. For example, this error will be displayed
when writing information to a file with a FileAppend statement:

FileAppend(“file.txt”,);

that includes the numeric expression Value1 instead of a text string. Numeric expressions
can be converted to strings by using the NumToStr() keyword. For example:

FileAppend(“file.txt”, NumToStr(Value1,2));

569 "Buy or SellShort name within double quotes expected here."
When specifying the name of a trading strategy, only a text string literal can be used, and
it can’t be substituted by a variable or an input. The following statements will generate this
error:

Variable: txt(“MyStrategy”);

 (txt) Next Bar at Market;

while the correct way of assigning a name to a strategy is to use a literal string, such as:
Buy (“Strategy Name”) Next Bar at Market;

Open

Value1

Buy

EasyLanguage Colors, Widths & Codes 209
A P P E N D I X B

EasyLanguage Colors, Widths & Codes
Colors
When working with analysis techniques or drawing objects using colors, you can
specify any of the 17 colors listed below (including -1), using the name, EasyLanguage
word, or numeric equivalent:

Widths
You can specify the width of a plot in EasyLanguage by using a numerical value from
0 - 6, where 0 represents the thinnest width and 6 the thickest. Also, you can use -1 to
have the analysis technique use the width specified in the Style tab of the Format
dialog box.

Color Name Reserved Word Numeric Equivalent
Use the color specified in
Color tab of Format dialog
box

Default -1

Black Tool_Black 1
Blue Tool_Blue 2
Cyan Tool_Cyan 3
Green Tool_Green 4
Magenta Tool_Magenta 5
Red Tool_Red 6
Yellow Tool_Yellow 7
White Tool_White 8
DarkBlue Tool_DarkBlue 9
DarkCyan Tool_DarkCyan 10
DarkGreen Tool_DarkGreen 11
DarkMagenta Tool_DarkMagenta 12
DarkRed Tool_DarkRed 13
DarkBrown Tool_DarkBrown 14
DarkGray Tool_DarkGray 15
LightGray Tool_LightGray 16

210 APPENDIX B
Trendline and Text Object Error Codes

When the text or trendline operation was successful, zero (0) is returned.

Value Explanation
-2 The identification number used was invalid (i.e., there is no object on

the chart with this ID number).
-3 The data number (Data2, Data3, etc.) passed to the function was

invalid. There is no symbol (or data stream) on the chart with this data
number.

-4 The value passed to a SET function was invalid (for example, an invalid
color or line thickness was used).

-5 The beginning and ending points were the same (only when working
with trendlines). Can occur when you relocate a trendline or change
the begin/end points.

-6 The function was unable to load the default values for the tool.
-7 Unable to add the object. Possibly due to an out of memory condition.

Your system resources have been taxed and it cannot process the
request.

-8 Invalid pointer.Your system resources have been taxed and it cannot
process the request.

-9 Previous failure.Once an object returns an error code, no additional
objects can be created by the trading strategy, analysis technique, or
function that generated the error.

-10 Too many trendline objects on the chart.
-11 Too many text objects on the chart.

Reserved Words Quick Reference 211
A P P E N D I X C

Reserved Words Quick Reference
#BEGINALERT
A compiler directive that executes instructions between #BeginAlert and #End only
when the Enable Alert check box is selected.
Usage: #BeginAlert

Alert("ADX Alert");
#End;

#BEGINCMTRY
A compiler directive that executes instructions between #BeginCmtry and #End only
when using the Analysis Commentary tool to select a bar on a chart or a cell on a
grid.
Usage: #BeginCmtry

Commentary(“The value is ” + NumtoStr(Plot1, 0));
#End;

#BEGINCMTRYORALERT
A compiler directive that executes instructions between #BeginCmtryOrAlert and
#End when either the Alert or Commentary conditions exist.
Usage: #BeginCmtryorAlert

Alert("ADX Alert");
Commentary(“The value is ” + NumtoStr(Plot1, 0));

#End;

#END
A compiler directive used to terminate an alert or commentary block statement.
A
Skip word ignored during execution.
Usage: If a Close is > 100 Then {any operation} ;

(alphabetical)

212 APPENDIX C
AB_AddCell
Adds a cell to an ActivityBar row.
Syntax: AB_AddCell(Price, Side, Str_Char, Color, Value);

Price: a numeric expression representing the price of a bar (e.g.,Open,Close)
Side: LeftSide,RightSide
Str_Char: a character that is displayed in the ActivityBar cell (e.g.,"A","N")
Color: an EasyLanguage color value (e.g.,Red, Black)
Value: a numeric expression representing the value of the cell

Usage: AB_AddCell(Open, Leftside, "A", Red, 1) ;

AB_AddCellRange
Adds cells to a price range of the current bar starting at LowValue to HighValue.
Syntax: AB_AddCellRange(RangeHi, RangeLo, Side, Label, Color, Value)

RangeHi: a numeric expression representing the highest price for a column
RangeLo: a numeric expression representing the lowest price for a column
Side: LeftSide,RightSide
Label: a character that will be placed in the ActivityBar cell (e.g.,"A","N")
Color: an EasyLanguage color value (e.g.,Red, Black)
Value: a numeric expression representing the value of each cell to be added

Usage: Value1 = AB_AddCellRange(High of ActivityData, Low of
ActivityData, RightSide, “U”, Green, 0);

AB_AverageCells
Returns the average number of ActivityBar cells per row for the current bar.
Syntax: AB_AverageCells(Side)

Side: LeftSide,RightSide
Usage: Value2 = AB_AverageCells(RightSide);

AB_AveragePrice
Returns the average price of the ActivityBar cells on one or both sides.
Syntax: AB_AveragePrice(Side)

Side: LeftSide,RightSide
Usage: Value2 = AB_AveragePrice(LeftSide);

AB_CellCount
Counts and returns the number of cells on one or both sides of an ActivityBar.
Syntax: AB_CellCount(Side)

Side: LeftSide,RightSide
Usage: Value2 = AB_CellCount(LeftSide);

Reserved Words Quick Reference 213
AB_GetCellChar
Returns the text string expression stored in the specified cell.
Syntax: AB_GetCellChar(Price,Side,Column)

Price: price value of the row containing the character
Side: LeftSide,RightSide
Column: number of the cell column containing the character on the side specified

Usage: Str = AB_GetCellChar(Close, RightSide, 3) ;

AB_GetCellColor
Returns the color of the character stored in the specified cell.
Syntax: AB_GetCellColor(Price,Side,Column)

Same parametersparameters as AB_GetCellChar above.
Usage: Value1 = AB_GetCellChar(Open, LeftSide, 2) ;

AB_GetCellDate
Returns the corresponding date of the specified cell.
Syntax: AB_GetCellDate(Price,Side,Column)

Same parameters as AB_GetCellChar above.
Usage: Value2 = AB_GetCellDate(High,RightSide, 5) ;

AB_GetCellTime
Returns the corresponding time of the specified cell.
Syntax: AB_GetCellTime(Price,Side,Column)

Same parameters as AB_GetCellChar above.
Usage: Value1 = AB_GetCellTime(Low,LeftSide, 4) ;

AB_GetCellValue
Returns the extra value stored in the specified cell.
Syntax: AB_GetCellValue(Price,Side,Column)

Same parameters as AB_GetCellChar above.
Usage: Value2 = AB_GetCellValue(High,RightSide, 1) ;

AB_GetNumCells
Returns how many cells exist at a specified price on the right or left side.
Syntax: AB_GetNumCells(Price,Side)

Price: price value of the row
Side: LeftSide,RightSide

Usage: Value1 = AB_GetNumCells(Close,LeftSide) ;

AB_GetZoneHigh
Returns the value of the top (high) of the ActivityBar zone.
Syntax: AB_GetZoneHigh(Side)

Side: LeftSide,RightSide
Usage: Value1 = AB_GetZoneHigh(LeftSide) ;

214 APPENDIX C
AB_GetZoneLow
Returns the value of the bottom (low) of the ActivityBar zone.
Syntax: AB_GetZoneLow(Side)

Side: LeftSide,RightSide
Usage: Value2 = AB_GetZoneLow(RightSide) ;

AB_High
Returns the high of the current ActivityBar.
Usage: Value1 = AB_High ;

AB_Low
Returns the low of the current ActivityBar.
Usage: Value1 = AB_Low ;

AB_Median
Returns the median price value of the cells for the current ActivityBar.
Syntax: AB_Median(Side)

Side: LeftSide,RightSide
Usage: Value2 = AB_Median(RightSide) ;

AB_Mode
Returns the cell count of the row with the most cells (the Mode row) and the price of
the Mode row.
Syntax: AB_Mode(Side, Type, oModeCount, oModePrice)

Side: LeftSide,RightSide
Type: >= 0 for Largest mode, < 0 for smallest mode
oModeCount: Variable or array element that takes the number of cells (passed by reference)
oModePrice: Variable or array element that takes the Mode price (passed by reference)

Usage: Value1 = AB_Mode(LeftSide) ;

AB_NextColor
Specifies the color of ActivityBar cells based on a user-defined interval.
Syntax: AB_NextColor(MinuteInterval)

MinuteInterval: number of minutes that make up each cell color interval
Usage: Value1 = AB_NextColor(10);

AB_NextLabel
Returns an letter/number to use in an ActivityBar cell based on a user-defined interval.
Syntax: AB_NextLabel(MinuteInterval)

MinuteInterval: number of minutes that make up each cell label interval
Usage: Value1 = AB_NextLabel(10);

Reserved Words Quick Reference 215
AB_RemoveCell
Removes a cell from an ActivityBar row.
Syntax: AB_RemoveCell(Price,Column,Side)

Price: price value of the cell to remove
Column: number of the column containing the cell on the side specified
Side: LeftSide,RightSide

Usage: Value1 = AB_RemoveCell(Close,3,RightSide) ;

AB_RowHeightCalc
Calculates and returns the row height to use for an ActivityBar.
Syntax: AB_RowHeightCalc(ApproxNumRows,RangeAvgLength)

ApproxNumRows: the approximate number of rows desired (usually between 5 and 25)
RangeAvgLength: number of bars back used to determine the average price rage

Usage: Value2 = AB_RowHeightCalc(10, 5) ;

AB_RowHeight
Returns the row (cell) height for an ActivityBar. Often used with AB_SetRowHeight.
Usage: Value1 = AB_RowHeight ;

AB_SetActiveCell
Changes the placement of the ActivityBar marker to the specified location on the bar.
Syntax: AB_SetActiveCell(Price,Side)

Price: price value of the cell row
Side: LeftSide,RightSide

Usage: AB_SetActiveCell(Open,RightSide) ;

AB_SetRowHeight
Changes the current ActivityBar’s row-increment value.
Syntax: AB_SetRowHeight(RowHeight)

RowHeight: value representing the row spacing for cells. Generally use
AB_RowHeightCalc as the parameter.

Usage: AB_SetRowHeight(AB_RowHeightCalc(10,5)) ;

AB_SetZone
Sets a zone range box for an ActivityBar side.
Syntax: AB_SetZone(HighPrice,LowPrice, Side)

HighPrice: a numeric expression representing the high price of the zone range box
LowPrice: a numeric expression representing the low price of the zone range box
Side: LeftSide,RightSide

Usage: AB_SetZone(Average(High, 5), Average(Low, 5), RightSide);

216 APPENDIX C
AB_StdDev
Returns the standard deviation of the ActivityBar cells for the specified side.
Syntax: AB_StdDev(Multiplier, Side)

Multiplier: represents the number of standard deviations to calculate
Side: LeftSide,RightSide,Both

Usage: Value2 = AB_StdDev(2, LeftSide);

Above
Used only with Crosses to detect a value crossing above, or over, another value.
Usage: If Plot11 Crosses Above Plot2 Then {Any Operation} ;

AbsValue
Absolute value of num.
Syntax: AbsValue(Num)

Num: a numeric value or expression
Usage: Value1 = AbsValue(-1.45); {returns a value of 1.45}

ActivityData
References any bar data element (Open, upticks, etc.) of the ActivityBar.
Usage: Value2 = AB_AddCellRange(High of ActivityData,Low of

ActivityData,Rightside,3,2);

AddToMovieChain
Appends movie file MFile to end of movie chain MChain.
Syntax: AddToMovieChain(MFile,MChain)

MFile: a numeric expression representing a movie chain ID
MChain: a string expression representing the path and name of the *.avi file to be
added to the specified movie chain

Ago
References a specified number of bars back already analyzed by EasyLanguage.
Usage: Value1 = Close of 1 Bar Ago; {returns Close of the previous bar}

Alert
When True, triggers an alert for an indicator or study. The alert description is optional.
Usage: If {Your Alert Criteria} Then Alert(“MyAlert”);

AlertEnabled
Returns True if the Enable Alert check box is selected.
Usage: If AlertEnabled Then Begin
 {Your Code Here}
 End ;

All
Specifies all shares/contracts are to be sold/covered when exiting a position.
Usage: If Condition1 Then Sell All Shares Next Bar at Market;

Reserved Words Quick Reference 217
An
Skip word used to improve readability. Ignored during execution.
Usage: If an Open is > 100 Then {any operation}
AND
Links 2 true/false expressions together. True if both expressions are true.
Usage: If Plot1 Crosses Above Plot2 AND Plot2 > 5 Then

{any operation};
Arctangent
Returns the inverse tangent (arctangent) value of num, where num is the slope (rise/
run);
Usage: Value1 = Arctangent(num); {returns 45.0 when num is 1}

Array
Used to declare an array type of variable.
Syntax: Array: AnyName[Elements](InitialValue)

Elements: the number of indexed values that this array can store
InitialValue: a numeric expression used to set the initial value of each element

Usage: Array: AnyName[4](0); {declares a 4 element array with '0' for initial values}

Arrays
Used to declare an array type of variable.

See Array.
ARRAYSIZE
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
ARRAYSTARTADDR
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
At
Skip word used to improve readability. Ignored during execution.
Usage: Buy 100 Contracts on Next Bar at Market;

At$
Anchors exit prices to the bar where the named entry order was placed.
Usage: Sell from Entry("MA Cross") At$ Low - 1 Point Stop;

AtCommentaryBar
Returns True if the current bar was selected with the Analysis Commentary Tool.
Usage: If AtCommentaryBar Then {your commentary} ;
AvgBarsLosTrade
The average number of bars that elapsed during losing trades for all closed trades.
Usage: Value1 = AvgBarsLosTrade; {Note: returns the integer portion of the average}

218 APPENDIX C
AvgBarsWinTrade
The average number of bars that elapsed during winning trades for all closed trades.
Usage: Value2 = AvgBarsWinTrade; {Note: returns the integer portion of the average}

AvgEntryPrice
Returns the average entry price of each open entry in a pyramided position.
Usage: Value1 = AvgEntryPrice; {returns 70 for open trades entered at 45, 75 and 90}

AvgList
Returns the average of the listed values.
Usage: Value2 = AvgList(18, 67, 98, 24, 65, 19); {returns a value of 48.5}

Bar
References values for a specific bar based on the data interval.
Usage: Buy Next Bar at Open ;

BarInterval
Returns the data interval (in minutes) for bars on a minute-based chart.
Bars
References a bar occurring N bars ago based on the data interval.
Usage: Value2 = Open of 5 Bars Ago ;

BarsSinceEntry
Bars since initial entry of position, num position(s) ago.
Syntax: BarsSinceEntry(Num)

Num: number of positions ago, 0 for current position
BarsSinceExit
Bars since position closed-out, num position(s) ago.
Syntax: BarsSinceExit(Num)

Num: number of positions ago, 0 for current position

BarStatus
Determines if a trade (tick) opened the bar, closed the bar, or is ‘inside the bar.’
Syntax: BarsStatus(DataSeries)

DataSeries: specifies which data series to use
Returns: 0 for opening tick, 1 for inside tick, 2 for closing tick, -1 on an error

Usage: Value2 = BarStatus(2) ;

BarType
The compression setting of the price data for the applied analysis technique.

Returns: 0 forTick, 1 for Intraday, 2 for Daily, 3 for Weekly, 4 for Monthly, 5 for Point & Figure.
Usage: If BarType = 2 Then {Any Operation} {tests for daily bars}

Reserved Words Quick Reference 219
Based
Skip word retained for backward compatibility.
Begin
Used to begin a block of EasyLanguage instructions within a conditional statement.
Usage: If Condition1 = True Then Begin
 {Your Code Line1}
 {Your Code Line2, etc.}

 End;

Below
Used only with Crosses to detect a value crossing below, or under, another value
Usage: If Value1 Crosses Below Value2 Then {Any Operation} ;

Beta
Returns the Beta value of a stock compared to the S&P 500 index.
BigPointValue
Dollar amount of 1 full point move.
Usage: Value1 = BigPointValue * Close;

Black
Specifies color Black (numeric value = 1) for plots and backgrounds.
BlockNumber
Returns the unique Security Block number attached to this computer.
Blue
Specifies the color Blue (numeric value = 2) for plots and backgrounds.
Usage: Plot1(Value1, "Test", Blue);

BOOL
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
BoxSize
Refers to minimum price change needed to add an X or O to a Point & Figure chart.
BreakEvenStopFloor
Reserved for backward compatibility with previous versions of the product. Replaced
by the reserved word SetBreakEven.

220 APPENDIX C
Buy
Initiates a long position. Covers any short positions & reverses an existing position.
Syntax: Buy [("Order Name")] [num of shares] execution instruction;

execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: Buy Next Bar at Market;
Buy("Buy Close") 20 Shares This Bar on Close;
Buy 5 Contracts Next Bar at High + Range Stop;
Buy("BuyLimit") Next Bar at Price Limit;

BuyToCover
A trading strategy order to partially or completely cover short positions.
Syntax: BuyToCover [from entry ("MyTrade")] [num of shares] execution instruction;

execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: BuyToCover Next Bar at Market;
BuyToCover From Entry ("BuyClose") Next Bar at 75 Stop
BuyToCover 5 Contracts Next Bar at Low + Range Stop;
BuyToCover From Entry ("BuyLimit") Next Bar at Price Limit;

By
Skip word ignored during execution.
Usage: Value1 = (High-Close) / by 2;
BYTE
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
C
Abbreviation for Close. Returns the closing price of a referenced bar.
Usage: If Price > Close of 1 Bar Ago Then Buy on Close;

Cancel
Used in conjunction with Alert to cancel a previously triggered alert.
Usage: If {Any Condition} Then Cancel Alert;

Category
Category of symbol: 0=Future, 1=Future Option, 2=Stock, 3=Stock Option, etc.
Usage: Value1 = Category {returns a value of 3 for MSQ option of MSFT}

Ceiling
Returns the lowest integer greater than num.
Syntax: Ceiling(Num);

Num: a numeric value or expression
Usage: Value1 = Ceiling(4.5) {returns a value of 5}

Reserved Words Quick Reference 221
CHAR
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
CheckAlert
Returns True for the last bar when Enable Alert check box is selected.
Usage: If CheckAlert Then {Any Operation};

CheckCommentary
Returns True when the Analysis Commentary Tool is applied to the current bar.
Usage: If CheckCommentary Then {Any Operation};

ClearDebug
Clears the contents of the Print Log tab of the EasyLanguage Output Bar.
Close
Returns the closing price of the bar being referenced.
Usage: Value1 = Close of 1 Bar Ago ;

If Close > Close[1] Then Plot1(High,"ClosedUp");

Commentary
Sends EasyLanguage expression(s) to the Analysis Commentary window.
Usage: Commentary("This is analysis commentary");

CommentaryCL
Sends EasyLanguage expression(s) to Analysis Commentary with a carriage return.
Usage: CommentaryCL("This is a single line of commentary");

CommentaryEnabled
Returns True on any bar when the Analysis Commentary window is open.
Commission
Returns the commission setting from the current strategy’s Costs tab.
CommodityNumber
Unique number representing a particular symbol in the Symbol Dictionary (optional).
Usage: If CommodityNumber = 149 Then {Any Operation};

Contract
Specifies the number of units (contracts/shares) to trade within a trading strategy.
Usage: Sell 1 Contract Next Bar at Market;

Contracts
Specifies the number of units (contracts/shares) to trade within a trading strategy.

Same as Contract.

222 APPENDIX C
Cosine
Returns the cosine value of num degrees.
Usage: Value1 = Cosine(72); {returns 0.3090 when num is 72 degrees}

Cost
Returns the value of the cost of establishing a leg or position.
Usage: Plot1(Cost of Leg(1), "Cost");

Cotangent
Returns the cotangent value of num degrees.
Usage: Value1 = Cotangent(45); {returns 1.0 when num is 45 degrees}

Cross
Used to detect when values have crossed over/under or above/below another value.
Usage: If Plot1 does Cross Above Plot2 Then {Any Operation};

Crosses
Used to detect when values have crossed over/under or above/below another value.
Usage: If Value1 Crosses Below Value2 Then {Any Operation};
Current
Reserved for future use.
CurrentBar
Returns the number of the bar currently being evaluated. Since CurrentBar is based on
MaxBarsBack, if there are 500 bars in a chart, with a MaxBarsBack setting of 10, the
next bar after the 9th bar on the chart moving left to right, will be CurrentBar = 1. The
last bar on the chart (most recent) will be CurrentBar = 491.
CurrentContracts
The number of contracts in the current position.
CurrentDate
Returns the current date in the format YYMMDD or YYYMMDD.
Usage: Value1 = CurrentDate; {returns a value of 1011220 on December 20, 2001}

CurrentEntries
Number of entries currently open within a position.
Usage: Value2 = CurrentEntries
CurrentTime
Returns the current time as HHMM using a 24-hour format.
Usage: Value2 = CurrentTime {returns a value of 1718 at 5:18 pm}

CustomerID
Returns the User ID number of the person to whom the software is registered.

Reserved Words Quick Reference 223
Cyan
Specifies color Cyan (numeric value = 3) for plots and backgrounds.
D
Returns the closing date of the bar referenced. (Abbreviation for Date).
DailyLimit
Number of stocks/contracts allowed traded in 1 day.
DarkBlue
Specifies color Dark Blue (numeric value = 9) for plots and backgrounds.
DarkBrown
Specifies color Dark Brown (numeric value = 14) for plots and backgrounds.
DarkCyan
Specifies color Dark Cyan (numeric value = 10) for plots and backgrounds.
DarkGray
Specifies color Dark Gray (numeric value = 15) for plots and backgrounds.
DarkGreen
Specifies color Dark Green (numeric value = 11) for plots and backgrounds.
DarkMagenta
Specifies color Dark Magenta (numeric value = 12) for plots and backgrounds.
DarkRed
Specifies color Dark Red (numeric value = 13) for plots and backgrounds.
DataN
Used to reference information from a specified data stream.
Usage: Value1 = Low of Data10 {returns the Low for the current bar from data stream 10}

DataCompression
The compression setting of the price data for the applied analysis technique.

Returns: 0 forTick, 1 for Intraday, 2 for Daily, 3 for Weekly, 4 for Monthly, 5 for Point & Figure.
Usage: If DataCompression=2 Then {Any Operation} {tests for daily bars}

DataInUnion
Reserved for future use.
Date
Returns the closing date of the bar referenced in YYYMMDD format.
Usage: If Date < 990101 Then Buy This Bar on Close;

224 APPENDIX C
DateToJulian
Converts calendar date to Julian date.
Syntax: DateToJulian(cDate);

cDate: numeric expression for the date in YYMMDD or YYYMMDD format.
Usage: Value2 = DateToJulian(991024) {returns Julian value of 36457)

Day
Reserved for backward compatibility. Replaced by Bar.
DayOfMonth
Returns the day of month (DD) portion of the specified calendar date.
Syntax: DayOfMonth(cDate);

cDate: numeric expression for the date in YYMMDD or YYYMMDD format.
Usage: Value1 = DayOfMonth(991004) {returns day value of 4)

DayOfWeek
Returns the day of week (0 for Sun., 1 for Mon., ..., 6 for Sat.) for a calendar date.
Syntax: DayOfWeek(cDate);

cDate: numeric expression for the date in YYMMDD or YYYMMDD format
Usage: Value1 = DayOfWeek(1011024){returns 3 because Oct 24, 2001 is a Wednesday)

Days
Reserved for backward compatibility. Replaced by Bars.
Default
Used in plot statements to set a style to its default value.
Usage: Plot1(Value1, "Plot1", Default, Default, 5);

DefineCustField
Reserved for future use.
DEFINEDLLFUNC
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
DeliveryMonth
Used for contracts that expire. Returns the month of expiration (1...12).
DeliveryYear
Used for contracts that expire. Returns the 3-digit year of expiration.
Description
Returns a string containing the description of the symbol if it is available.
Usage: TextString= Description; {symbol decription - blank if none available}

Dividend
Returns the Dividend paid any number of periods ago.
Usage: Value1 = Dividend(2); {the last dividend amount paid 2 periods ago}

Reserved Words Quick Reference 225
Dividend_Yield
Most recent cash dividend paid (or declared) times the dividend payment frequency.
Does
Skip word ignored during execution.
Usage: If Plot1 Does Cross Over Plot2 Then {Any Operation}

DOUBLE
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
DownTicks
Number of ticks on a bar whose value is lower than the tick immediately preceding it
(or an unchanged tick that follows a downtick).
DownTo
Instructs a loop's counter to decrement and exit the loop at a specified value.
Usage: For Value5 = Length DownTo 0 Begin

 {Any Operations}
End;

DWORD
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
EasyLanguageVersion
Returns the EasyLanguage version currently installed (i.e., EL 2000i is version 5.1).
Usage: If EasyLanguageVersion >= 5.0 Then {Any Operation}

EL_DateStr
Returns an 8 character YYYYMMDD string based on month, day, and year values.
Syntax: EL_DateStr(Month,Day,Year);

(Month) is a numeric expression representing a month (e.g., January = 01).
(Day) is a numeric expression representing the day of the month.
(Year) is a numeric expression representing a four-digit year.

Usage: Value1 = EL_DateStr(09,05,1999){returns the string 19990905)

Else
Used to execute instructions when the specified ‘If’ condition returns False.
Usage: If Condition1 Then
 {Operation done if condition is true}

Else
 {Operations done if condition is false} ;

End
Used with Begin to execute multiple statements based on a condition. See Begin.
Entry

226 APPENDIX C
An optional Exit parameter used to reference a specific, named entry.
Usage: Sell from Entry ("MyTrade") Next Bar at Market;

EntryDate
Returns the entry date for the specified period in the format YYYMMDD.
Usage: Value1 = EntryDate(2) {the date of the entry 2 periods ago}

EntryPrice
Returns the entry price for the specified period.
Usage: Value2 = EntryPrice(1) {the price of the entry 1 period ago}

EntryTime
Returns the entry time for the specified period in the 24-hour format HHMM.
Usage: Value1 = EntryTime(3) {the time of the entry 3 periods ago}

EPS
Returns the reported earnings-per-share value for the specified period.
Usage: Value2 = EPS(5) {the Earnings-Per-Share 5 periods ago}

ExitDate
Returns the exit date for the specified position in the format YYYMMDD.
Usage: Value2 = ExitDate(4) {the exit date 4 positions ago}

ExitPrice
Returns the exit price for the specified position
Usage: Value1 = ExitPrice(2) {the exit price 2 positions ago}

ExitTime
Returns the exit time for the specified position in 24-hour HHMM format.
Usage: Value1 = ExitTime(1) {the exit time 1 position ago}

ExpValue
Returns the exponential value of the specified number.
Usage: Value2 = ExpValue(4.5) {returns a value of 90.0171}

False
Represents the logical value False when evaluating an expression or setting an input.
Usage: Input:MyValue(False); {initializes MyValue to False}

File
Sends information to a specified file from a print statement.
Syntax: File(strFilename);

strFileName: name of file to receive ‘print’ output
Usage: Print(File("c:\data\mydata.txt"), Date, Time, Close);

Reserved Words Quick Reference 227
FileAppend
Appends a text string to the end of a specified file.
Syntax: FileAppend(strFilename,strText);

strFileName: name of file to which text will be appended
strText: text string containing information that will be added to the specified text file

Usage: FileAppend("d:\myfile.txt","Add this text to the file");

FileDelete
Deletes the specified file.
Syntax: FileDelete(strFilename);

strFileName: path name of file
Usage: FileDelete("e:\path\anyfile.txt");

FirstNoticeDate
Returns the first notice date of a futures contract, in YYYMMDD format.
FLOAT
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Floor
Returns the highest integer less than the specified number.
Usage: Floor(6.5) {returns a value of 6}

For
Executes a block of instructions a specified number of times within a loop.
Usage: For N = 1 To 10 Begin
 Total = Total + Price[N];

End ; {adds Price(N) to Total 10 times}

FracPortion
Returns the fractional portion of a number while retaining the sign.
Usage: FracPortion(-1.72) {returns a value of -0.72}

Friday
Specifies day of the week Friday (numeric value = 5).
From
Used with Entry to specify the name of a Long or Short entry in an Exit statement.
Usage: Sell From Entry("MyTrade") Next Bar at 75 Stop ;

GetBackgroundColor
Returns the current chart background color (see Appendix B for color values).
Usage: Value1 = GetBackgroundColor;

228 APPENDIX C
GetCDRomDrive
Returns the drive letter of first CD-ROM found.
Usage: Variable: Drive("D");

Drive = GetCDRomDrive;

GetExchangeName
Returns the name of the Exchange for a symbol.
Usage: Value1 = GetExchangeName; {i.e. ,'NYSE' for the New York Stock Exchange}

GetPlotBGColor
Returns the background color of a cell on a grid.
Syntax: GetPlotBGColor(PlotNum);

PlotNum: value or expression representing the plot number
Usage: Value2 = GetPlotBGColor(1);

GetPlotColor
Returns the numeric color value of a chart's plot line or grid's foreground color.
Syntax: GetPlotColor(PlotNum);

PlotNum: value or expression representing the plot number
Usage: Value1 = GetPlotColor(2);

GetPlotWidth
Returns the width value of a plot line in a chart.
Syntax: GetPlotWidthPlotNum);

PlotNum: value or expression representing the plot number
Usage: Value2 = GetPlotWidth(1);

GetStrategyName
Reserved for backward compatibility.
GetSymbolName
Returns a string with the symbol name to which the analysis technique is applied.
GetSystemName
Reserved for backward compatibility. See GetStrategyName.
Gr_Rate_P_EPS
Returns the Earnings Per Share Growth Rate for a stock.
Green
Specifies color Green (numeric value = 4) for plots and backgrounds.
GrossLoss
Cumulative dollar total of all closed-out losing trades.
Usage: Value1 = GrossLoss; {returns -1000 for three losing trades of -500,-200, and -300}

Reserved Words Quick Reference 229
GrossProfit
Cumulative dollar total of all closed-out winning trades.
Usage: Value2 = GrossProfit; {returns 800 for three winning trades of 100, 300, and 400}

H
Returns the highest price of the bar referenced. (abbreviation for High)
Usage: Value1 = H[2]; {returns the High of 2 bars ago}

High
Returns the highest price of the bar referenced.
Usage: Value2 = High of 1 bar ago; {returns the High of the previous bar}

Higher
Synonym for stop or limit orders depending on the context used within a strategy.
Usage1: Buy Next Bar at MyEntryPrice or Higher; {Buy... Stop}

BuyToCover Next Bar at MyExitPrice or Higher; {BuyToCover... Stop}
Usage:2 SellShort Next Bar at MyEntryPrice or Higher;{SellShort... Limit}

Sell Next Bar at MyEntryPrice or Higher; {Sell...Limit}

HistFundExists
True if historical fundamental info (EPS, Dividends, and Splits) exists for symbol.
I
Number of contracts outstanding at the close of a bar (abbreviation for OpenInt).
Usage: Value1 = I of 1 bar ago; {returns the open interest of the previous bar}

I_AvgEntryPrice
Returns the average entry price of each open entry in a pyramided position. For use
when writing indicators and studies.
Usage: Value2 = I_AvgEntryPrice; {returns150 for opens entries at 130, 145, and 175)

I_ClosedEquity
Returns the profit or loss realized when a position is closed. For use when writing indi-
cators and studies.
I_CurrentContracts
Returns the number of contracts held in all open entries. For use when writing indica-
tors and studies.
Usage: Value2= I_CurrentContracts; {returns 3 for 3 open enries of 1 contract each)

I_MarketPosition
A strategy's current market position: 1 = long, -1 = short, 0 = flat. For use when writ-
ing indicators and studies.
Usage: Value1 = I_MarketPosition; {returns 1 if currently held position is Long)

I_OpenEquity
Returns the current gain or loss while a position is open.

230 APPENDIX C
If
Specifies condition(s) that must be met to execute a set of instructions.
Usage: If Condition1 Then Begin
 {Operations done if condition is true}

End ;

IncludeSignal
Reserved for backward compatibility.
IncludeSystem
Reserved for backward compatibility. Replaced by IncludeSignal.
InitialMargin
Returns the Initial Margin Requirement of a position.
Usage: If InitialMargin of Position > 500 Then {Any Operation}

Input
Used to declare an input name that accepts a user value when applying a technique.
Usage: Input: Length(10); {declares input 'Length' with an initial value of 10}

Inputs
Declares multiple inputs separated by commas. See Input.
Usage: Inputs: Price(5.25), Length(8), Status(True);

InStr
Returns the location of String2 within String1.
Syntax: InStr(String1,String2);

String1: Text string to be searched
String2: Word or phrase to be found in String1
Returns: Character position of the start of String2, if found. Zero if not found.

Usage: Value1 = InStr("Net Profit Margin", "Profit"); {returns a 5}

INT
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
IntPortion
Returns the integer portion of the specified decimal number.
Syntax: IntPortion(Num);

Num: A numeric value or expression
Usage: Value1 = IntPortion(4.125); {returns a 4}

Is
Skip word ignored during execution.
Usage: If a Close is > 100 Then {any operation} ;

Reserved Words Quick Reference 231
JulianToDate
Returns the calendar date YYYMMDD for the specified Julian date.
Syntax: JulianToDate(jDate);

jDate: numeric expression for the date in Julian format.
Usage: Value2 = JulianToDate(36457); {returns Date value of 991024}

L
Returns the lowest price of the bar referenced. (abbreviation for Low)
Usage: Value1 = L[4]; {returns the Low of 4 bars ago}

LargestLosTrade
Returns the dollar value of the largest closed-out losing trade.
LargestWinTrade
Returns the dollar value of the largest closed-out winning trade.
LastCalcJDate
Returns the Julian date of last completed bar.
LastCalcMMTime
Returns the time of last completed bar, in minutes since midnight.
Usage: Value1 = LastCalcMMTime; {returns a value of 540 if last bar was at 9:00 am}

LastTradingDate
Refers to the last day an option, future, position leg, or asset may be traded.
LeftSide
Used with ActivityBars to refer to actions on the left side of a bar.
Usage: Value2 = GetCellChar(Close, Leftside, 3);

LeftStr
Returns the leftmost (starting) portion of a text string.
Syntax: LeftStr(String,Length);

String: A text string to evaluate. Must be enclosed in quotation marks.
Length: The number of characters to return from the start of String.

Usage: Value1 = LeftStr("Net Profit", 3); {returns the word "Net"}

LightGray
Specifies color Light Gray (numeric value = 16) for plots and backgrounds.
Limit
In an entry or exit order, means 'or higher' or 'or lower', depending on the context.
Usage: Buy Next Bar at 75 Limit; {enters a long position at a price of 75 or lower}

SellShort Next Bar at 75 Limit; {enters a short position at 75 or higher}

Log

232 APPENDIX C
Returns the natural logarithm of a number.
Usage: Value1 = Log(172); {returns a log value of 5.1475}

LONG
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Low
Returns the lowest price of the bar referenced.
Usage: Value2 = Low of 1 bar ago; {returns the Low of the previous bar}

Lower
Synonym for stop or limit orders depending on the context used within a strategy.
Usage1: Buy Next Bar at MyEntryPrice or Lower; {Buy... Limit}

BuyToCover Next Bar at MyExitPrice or Lower;{BuyToCover... Limit}
Usage2: SellShort Next Bar at MyEntryPrice or Lower;{SellShort... Stop}

Sell Next Bar at MyEntryPrice or Lower; {Sell...Stop}

LowerStr
Used to convert a string expression to lowercase letters.
Usage1: Value1 = LowerStr("My TextString") ; {returns "my textstring"}

LPBOOL
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPBYTE
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPDOUBLE
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPDWORD
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPFLOAT
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPINT
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPLONG
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPSTR
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
LPWORD
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Magenta

Reserved Words Quick Reference 233
Specifies color Magenta (numeric value = 5) for plots and backgrounds.
MakeNewMovieRef
Creates new movie reference number.
Usage: Print(MakeNewMovieRef = 1);

Margin
Returns the margin setting from the Trade costs section of the strategy’s General tab
Market
Order type referring to the opening price of the next bar.
Usage: Buy Next Bar at Market;

MarketPosition
The market position (1 = long, -1 = short, 0 = flat) of the specified position.
Syntax: MarketPosition(Num)

Num: number of positions ago
Usage: Value1 = MarketPosition(2) ; {returns1 if long 2 posittions ago was long}

MaxBarsBack
MaxBarsBack is the minimum number of referenced historical bars required, at the
beginning of a chart, to begin calculating a trading strategies, analysis techniques, and
functions. For example, a 10-bar moving average would require a MaxBarsBack set-
ting of 10 to calculate, which is 9 historical bars and the current bar.
MaxBarsForward
Represents the number of bars to the right of the last bar on the chart.
MaxConsecLosers
Represents the longest chain of consecutive closed-out losing trades.
MaxConsecWinners
Represents the longest chain of consecutive closed-out winning trades.
MaxContracts
The maximum number of contracts held during the specified position.
Syntax: MaxContracts(Num)

Num: number of positions ago.
Usage: Value1 = MaxContracts(2) ; {returns number of contracts held 2 posittions ago}

MaxContractsHeld
Maximum number of contracts held at any one time.
MaxEntries
The maximum number of entry strategies for the specified position.
Syntax: MaxEntries(Num)

Num: number of positions ago.

234 APPENDIX C
MaxIDDrawDown
The largest drop in equity (in dollars) throughout the entire trading period.
MaxList
Returns the highest value of the listed inputs.
Syntax: MaxList(Num1[,NumN...])

Num1 the first value or expression to compare
NumN additional values to compare separated by commas

Usage: Value1 = MaxList(45, 72, 86, 125, 47); {returns a value of 125}

MaxList2
Returns the second highest value of the listed inputs. See MaxList for syntax.
Usage: Value2 = MaxList2(18, 67, 98, 24, 65, 19); {returns a value of 67}

MaxPositionLoss
Dollar amount of largest loss for the specified position.
Syntax: MaxPositionLoss(Num)

Num: number of positions ago.
MaxPositionProfit
Dollar amount of largest gain for the specified position.
Syntax: MaxPositionProfit(Num)

Num: number of positions ago.
MessageLog
Reserved for backward compatibility.
MidStr
Returns the middle portion of a text string.
Syntax: MidStr (String,Location,Size) ;

String: text expression to evaluate
Location: starting character position of the text string to be returned
Size: length of the text string to be returned

Usage: Value1 = MidStr("Net Profit Value", 5, 6) {returns the word 'Profit'}

MinList
Returns the lowest value of the listed inputs.
Syntax: MinList(Num1[,NumN...])

Num1 the first value or expression to compare
NumN additional values to compare separated by commas

Usage: Value1 = MinList(45, 72, 86, 125, 47); {returns a value of 45}

MinList2
Returns the second lowest value of the listed inputs. See MinList for syntax.
Usage: Value2 = MinList2(18, 67, 98, 24, 65, 19) {returns a value of 19}

Reserved Words Quick Reference 235
MinMove
Minimum tick movement of stock/future symbol.
Usage: Value1 = MinMove * PriceScale {returns the smallest price increment}

Moc
Reserved for future use.
Mod
Divides two numbers and returns the remainder.
Syntax: Mod(Num,Divisor)

Num: any value or expression
Divisor: any numeric expression representing the divisor.

Usage: Value1 = Mod(17, 5); {divides 17 by 5 and returns 2 as the remainder}

Monday
Specifies day of the week Monday (numeric value = 1).
MoneyMgtStopAmt
Reserved for backward compatibility with previous versions of the product. Replaced
by the reserved word SetStopLoss.
Month
Returns the month (MM) portion of the specified calendar date, from 1 to 12.
Syntax: Month(cDate);

cDate: numeric expression for the date in YYMMDD or YYYMMDD format.
Usage: Value1 = Month(991004) {returns day value of 10}

MULTIPLE
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Neg
Returns the absolute negative value of a number.
Usage: Value1 = Neg(17); {returns a value of -17}

Value2 = Neg(-9); {returns a value of -9}

NetProfit
Cumulative dollar total of all closed-out trades, both winning and losing.
Usage: Value1 = NetProfit {returns 1000 for three closed trades of -500, 1200 and 300}

NewLine
Adds carriage return/linefeed in FileAppend and commentary/file output strings.
Usage: FileAppend("c:\my.txt", "Text Line1" + NewLine + "Line2");

Next
Used in conjunction with Bar to reference the next bar in a trading strategy.
Usage: Buy Next Bar at Market;

236 APPENDIX C
NoPlot
Removes a plot from the current bar in a chart or cell in a grid.
Usage: If Close > Close[1] Then

Plot1(High, "CloseUp") {plots 'CloseUp' on the bar}
Else

NoPlot(1); {removes a previous plot from the bar}

Not
Reserved for future use.
NthMaxList
Returns the Nth highest value of the listed inputs.
Syntax: NthMaxList(N,Num1[,NumN...])

N: an integer representing the rank in the list (1st, 2nd, 3rd, etc.)
Num1: the first value or expression to compare
NumN: additional values to compare separated by commas

Usage: Value1 = NthMaxList(2, 45, 72, 86, 125, 47); {returns a value of 86}

NthMinList
Returns the Nth lowest value of the listed inputs. See syntax as NthMaxList.
Usage: Value1 = NthMaxList(2, 45, 72, 86, 125, 47); {returns a value of 47}

Numeric
Defines an input that expects a number passed by value.
Usage: Input: Price(Numeric); {accepts a numeric value for Price}

NumericArray
Defines an input that expects a number passed by value for each array element.
Usage: Input: MyArray[n](NumericArray) {accepts numeric inputs by value}

NumericArrayRef
Defines an input that expects a numeric variable passed by reference for each array
element.
Usage: Input: MyArray[n](NumericArrayRef) {accepts numeric inputs by reference}

NumericRef
Defines an input that expects a numeric variable passed by reference.
Usage: Input: Price(NumericRef); {accepts a numeric variable reference for Price}

NumericSeries
Defines an input as a numeric series expression with price history.
Usage: Input: Price(NumericSeries); {a numeric input allowing previous bar history}

NumericSimple
Defines an input as a numeric simple expression.
Usage: Input: Price(NumericSimple); {a numeric input not allowing bar history}

Reserved Words Quick Reference 237
NumFutures
Returns the total number of futures contracts associated with a future symbol root.
Usage: Value1 = NumFutures of Asset;

NumLosTrades
Returns the total count of closed-out losing trades.
NumToStr
Converts the specified numeric expression to a string expression.
Syntax: NumToStr(Num,Dec);

Num: a numeric expression to be converted to a string
Dec: the number of decimal places for the string version of the value

Usage: Value1 = NumToStr(1170.5, 2) ; {returns the text string '1170.50'}

NumWinTrades
Total count of closed-out winning trades.
O
Abbreviation for Open. Returns the opening price of a referenced bar.
Usage: If Price < O of 1 Bar Ago Then SellShort at Market;

Of
Skip word ignored during execution.
Usage: If Close of Data1 = Highest(High, 14) Then {any operation} ;
On
Skip word ignored during execution.
Usage: Buy 100 Contracts on Next Bar Open;

Open
Returns the opening price of the bar referenced.
Usage: Value1 = Open of 2 Bars Ago;

OpenInt
The open interest, or number of contracts outstanding, at the close of a specific bar.
Usage: Value2 = Average(OpenInt, 10); {returns the average OpenInt over 10 bars}

OpenPositionProfit
Returns the gain or loss of current open position (only used with strategies).
Or
Links 2 true/false expressions together. True if either expression is true.
Usage: If Plot1 Crosses Above Plot2 Or Plot2 > 5 Then Begin

 {any operations} {done if either condition is true}
End;

Over

238 APPENDIX C
Used only with Crosses to detect a value crossing over, or above, another value.
Usage: If Plot1 Crosses Over Plot2 Then {Any Operation} ;

Pager_DefaultName
Returns the string containing of the default Message Recipient as specified in the
Messaging tab under the File - Desktop Options menu.
Usage: Name = Pager_DefaultName;

Pager_Send(Name, “Buy 200 AMD at Market”);

Pager_Send
Sends a text message to a specified pager recipient (if pager module enabled).
Syntax: Pager_Send(sTo,sMessage);

sTo: text string containing the name of the message recipient
sMessage: text string containing the message contents

Usage: Pager_Send("Joe Trader", "Buy 200 AMD at Market");

PercentProfit
Percentage of all closed-out winning trades.
Usage: Value1 = PercentProfit; {returns 80 if 8 of 10 trades were winners}

Place
Retained for backward compatibility. Skip word.
PlayMovieChain
Queues and plays the movie chain with the specified reference number.
Usage: Condition1 = PlayMovieChain(1); {plays the movie chain with ref number 1}

PlaySound
Plays the specified sound file (.wav file).
Usage: Condition1 = PlaySound("c:\sounds\thatsabuy.wav");

Plot
References the value of a specified plot.
Syntax: Plot(n);

n: plot number ranging from 1-4
Usage: If Plot(Value1) < Close Then Buy Next Bar on Open;

Reserved Words Quick Reference 239
Plot1
Displays an expression (numeric or text) in a price chart or grid.
Syntax: Plot1(Value[,sName[,fgColor,[bgColor[,Width]]]]);

Value: a numeric or text string expression or value to display on a chart or grid
sName: text string containing the name of the plot (optional)
fgColor: color number (or Default) of the plotted object or text (optional)
bgColor: color number (or Default) of the cell background in a grid (optional, ignored for charts)
Width: the thickness of a line to be plotted on a chart (optional, ignored for grids)

Usage: Plot1(Value) ;
 or
Plot1(Value, "My Plot Name", Red, Default, 0) ;

Plot2
Displays an expression in a price chart or grid. See Plot1 for syntax and usage.
Plot3
Displays an expression in a price chart or grid. See Plot1 for syntax and usage.
Plot4
Displays an expression in a price chart or grid. See Plot1 for syntax and usage.
PlotPaintBar
For use with PaintBar studies, enables you to paint the entire bar, or part of the bar,
with a single instruction.
Syntax: PlotPaintBar(High, Low[, Open, Close[, “PlotName”[,fgColor, [bgColor, Width]]]]);

High: the upper price limit to paint
Low: the lower price limit to paint
Open: (optional) paints the opening tick mark
Close: (optional) paints the closing tick mark
PlotName: (optional) name used when referencing the plot
fgColor: (optional) color number (or Default) of the paint color
bgColor: (optional) color number (or Default) of the background (currently ignored with charts)
Width: (optional) the thickness of the lines to be plotted

Usage1: PlotPaintBar(High,Low,Open,Close,"My Plot Name");
 or
Usage2: PlotPaintBar(High,Low);

PlotPB
Abbreviated version of PlotPaintBar (see PlotPaintBar).
PM_GetCellValue
Returns the intensity value of a cell at the specified column and price location.
Syntax: PM_GetCellValue(ColNum,Price);

ColNum: the ProbabilityMap column number where the cell is located
Price: the price location of the cell

Usage: Value1 = PM_GetCellValue(12,High) ;

240 APPENDIX C
PM_GetNumColumns
Returns the number of columns in a ProbabilityMap array.
Usage: Value1 = PM_GetNumColumns;

PM_GetRowHeight
Returns the height or increment of the rows in a ProbabilityMap study.
PM_High
Returns the value of the upper range of a ProbabilityMap grid.
PM_Low
Returns the value of the lower range of a ProbabilityMap grid.
PM_SetCellValue
Sets the location and intensity of ProbabilityMap cells.
Syntax: PM_SetCellValue(ColNum,Price,Value) ;

ColNum: the ProbabilityMap column of the cell to be set
Price: the price location of the cell within the column
Value: a numeric expression representing the intensity of the cell

Usage: PM_SetCellValue(5,80,10) ; {sets intensity of cell to 10}

PM_SetHigh
Sets the upper range value of a ProbabilityMap.
Syntax: PM_SetHigh(Price)

Price: a numeric expression or value for a price
Usage: PM_SetHigh(Highest(High,50)); {sets the PM top to the Highest High}

PM_SetLow
Sets the lower range value of a ProbabilityMap.
Syntax: PM_SetLow(Price)

Price: a numeric expression or value for a price
Usage: PM_SetLow(14.5) ; {sets the PM bottom to a price of 14.50}

PM_SetNumColumns
Sets the number of columns in a probability map array.
Syntax: PM_SetNumColumns(Num);

Num: a numeric expression or value representing the desired number of columns
Usage: PM_SetNumColumns(PM_BarColumns) ;

PM_SetRowHeight
Sets the height of the rows for a ProbabilityMap grid.
Syntax: PM_SetRowHeight(RowHeight);

RowHeight: a numeric expression or value for the height of each PB row
Usage: PM_SetRowHeight(.125) ; {sets the PM row height to a price of .125}

Reserved Words Quick Reference 241
Pob
Retained for backward compatibility. Replaced by Limit.
Point
The minimal fractional value a symbol can move (one increment in the Price Scale).
Usage: Sell This Bar at EntryPrice - 1 Point Stop;

POINTER
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Points
Represents multiple ‘Point’ increments of the Price Scale. See Point.
Usage: Buy This Bar at Close - 3 Points Stop;

PointValue
The dollar value per share of one increment on the price scale. Calculated as Big Point
Value divided by the Price Scale using the values specified in the symbol dictionary.
Usage: Value1 = PointValue; {returns 2.5 for S&P Futures}

Pos
Returns the absolute positive value of a number.
Usage: Value1 = Pos(17); {returns a value of 17}

Value2 = Pos(-9); {returns a value of 9}

PositionProfit
Returns the current gain (positive) or loss (negative) of the specified position.
Usage: Value1 = PositionProfit; {returns -1.00 if the position had a loss of 1.00}

Power
Returns the number raised to the specified power.
Syntax: Power(Num,Exponent);

Num: a numeric expression or value
Exponent: the power by which to raise the number

Usage: Value1 = Pow(2,3); {returns 8 based on 23}

PriceScale
Price scale of stock/future symbol (inverted).
Usage: Value2 = PriceScale {returns 100 for the S&P 500 Futures representing 1/100}

242 APPENDIX C
Print
Sends information to the Output Bar in the EasyLanguage PowerEditor or, if specified,
to an alternate output location (a file or the default printer).
Syntax: Print (Item1[,ItemN...]) ;

Item1: a string or numeric expression
ItemN: additional strings or expressions separated by commas

Usage: Print(Date, Time, Close); {prints the 3 values to the Print Log}
window}

Usage1: Print(Printer, D, T, C); {prints the same 3 values to the default printer}
Usage2: Print(“c:\myfile.txt”, D, T, C); {prints the 3 values to the specified file}

Printer
Sends information to the default printer from a Print statement.
Usage: Print(Printer,"Today is: ", Date); {sends output to the default printer}

Product
Number representing the TradeStation Technologies application currently being used.

Product Name Product Number
TradeStation 0

Usage: If Product = 0 Then Plot1(Value1, "TS Indicator");

Profit
Reserved for future use.
ProfitTargetStop
Retained for backward compatibility with previous versions of the product. Replaced
by the reserved word SetProfitTarget.
Protective
Reserved for future use.
Quick_Ratio
Calculated as (cash + short term investment + accounts receivable) / current liabilities.
Random
Returns a pseudo-random number between 0 and num.
Syntax: Random(num) ;

Num: value that determines the range of possible numbers, starting with 0 and ending with Num
Usage: Value1 = Random(37); {randomly returns any value between 0 and 37}

Red
Specifies color Red (numeric value = 6) for plots and backgrounds.
Repeat
Reserved for future use.

Reserved Words Quick Reference 243
RevSize
Reversal size of a Point & Figure chart. Set on the Settings tab under Format Symbol.
RightSide
Used with ActivityBars to refer to actions on the right side of a bar.
Usage: AB_AddCell(Open, Rightside, "A", 7, 1);

RightStr
Returns the rightmost (ending) portion of a text string.
Syntax: RightStr(String,Length);

String: A text string to evaluate. Must be enclosed in quotation marks.
Length: The number of characters to return from the end of String.

Usage: Value1 = RightStr("Net Profit", 6); {returns the word "Profit"}

Round
Returns a number rounded to nearest precision.
Divides two numbers and returns the remainder.
Syntax: Round(Num,Precision)

Num: any value or expression
Precision: the number of decimal places to keep

Usage: Value1 = Round(9.5687, 3); {returns a value of 9.569}

Saturday
Specifies day of the week Saturday (numeric value = 6).
Screen
Reserved for future use.
Sell
A trading strategy order to partially or completely liquidate a long position.
Syntax: Sell [from entry ("MyTrade")] [num of shares] [execution instruction];

execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: Sell Next Bar at Market;
Sell From Entry ("BuyClose") Next Bar at 75 Stop
Sell 5 Contracts Next Bar at Low + Range Stop;
Sell From Entry ("BuyLimit") Next Bar at Price Limit;

244 APPENDIX C
SellShort
Initiates a short position. Closes any open positions & reverses an existing position.
Syntax: SellShort [("Order Name")] [num of shares] [execution instruction];

execution instructions: this bar on close, next bar at market,
next bar at price stop, next bar at price limit

Usage: SellShort Next Bar at Market;
SellShort("Buy Close") 20 Shares This Bar on Close;
SellShort 5 Contracts Next Bar at Low + Range Stop;
SellShort("BuyLimit") Next Bar at Price Limit;

Sess1EndTime
Ending time of the first trading session for the security in 24-hour format.
Usage: Value2 = Sess1EndTime; {returns 1615 for IBM trading on the NYSE}

Sess1FirstBarTime
Completion time of the first bar in the first session in 24-hour format.
sage: Value2 = Sess1FirstBarTime; {returns 1000 for IBM using 30 min bars}

Sess1StartTime
Starting time of the first trading session for the security in 24-hour format.
Usage: Value1 = Sess1StartTime; {returns 0930 for IBM trading on the NYSE}

Sess2EndTime
Ending time of the second trading session for the security in 24-hour format.
Usage: Value2 = Sess2EndTime; {returns 0745 for US Treasury Bonds on CBOE}

Sess2FirstBarTime
Completion time of the first bar in the second session in 24-hour format.
Usage: Value1 = Sess2FirstBarTime;{returns 1715 for S&P 500 Futures on 30 min bars}

Sess2StartTime
Starting time of the second trading session for the security in 24-hour format.
Usage: Value1 = Sess2StartTime; {returns 1530 for US Treasury Bonds on CBOE}

Sessions
Returns a numeric expression representing the number of sessions.
SetBreakEven
Sets a breakeven stop; specifies the profit required before placing the stop. Used by the
trading strategy BreakEven StopFloor.
Syntax: SetBreakEven(Price)

Price: the floor, or minimum equity, needed for the stop to become active
Usage: SetStopPosition; {can also use SetStopContract}

SetBreakEven(250); {places a breakeven stop after a $250 position profit}

Reserved Words Quick Reference 245
SetDollarTrailing
Sets a dollar risk trailing stop; specifies the maximum tolerated loss amount (in dol-
lars) of the maximum open position profit. Used by the trading strategy Dollar Risk
Trailing.
Syntax: SetDollarTrailing(Amount)

Amount: the dollar amount you are willing to risk per position or per contract/share
Usage: SetStopPosition; {can also use SetStopContract}
 SetDollarTrailing(500); {sets dollar risk trailing stop at $500 for entire position}

SetExitOnClose
Sets a stop to exit the position on the last bar of the day (for intraday charts). Used by
the trading strategy Close at End of Day.
Usage: SetExitOnClose; {exits positions at end of day}

SetPercentTrailing
Sets a percent risk trailing stop; specifies the profit that must be reached to activate
stop and the maximum tolerated loss amount (as a percentage) of the maximum open
position profit. Used by the trading strategy PercentRisk Trailing.
Syntax: SetPercentTrailing(Amount,Percent)

Amount: the dollar amount representing the minimum needed to activate the stop
Percent: the percentage of the maximum equity needed to be lost to close the trade

Usage: SetStopPosition; {can also use SetStopContract}
 SetPercentTrailing(500,15); {exits after returnof 15% over $500 earned}

SetPlotBGColor
Assigns a specified background color to grid cells for an indicator.
Syntax: SetPlotBGColor(Num,Color)

Num: plot number to set
Color: EasyLanguage color word (e.g., red, black,white) or color number

Usage: SetPlotBGColor(1, Green); {sets background color of Plot1 cells to Green}

SetPlotColor
Sets the color value of a chart's plot line or grid's foreground text color.
Syntax: SetPlotColor(Num,Color);

Num: plot number to set
Color: EasyLanguage color word (e.g. red, black,white) or color number

Usage: SetPlotColor(2, Blue); {sets foreground color of Plot2 text to Blue}

SetPlotWidth
Modifies the width value (thickness) of a plot line in a chart.
Syntax: SetPlotWidth(Num,Width);

Num: plot number to set
Width: Numeric expression representing the plot’s width

Usage: SetPlotWidth(1, 5); {sets the line width of Plot1 to 5}

246 APPENDIX C
SetProfitTarget
Sets a profit target stop; this reserved word specifies the profit required in order to exit
the position. Used by the trading strategy Profit Target.
Syntax: SetProfitTarget(Amount)

Amount: the dollar value of the profit target
Usage: SetStopContract;
 SetProfitTarget(400); {exits a position once it has returned $400}

SetStopContract
Instructs TradeStation to evaluate all stop values of a strategy on a per contract (entry)
basis. Use SetStopPosition to evaluate stop values on a per position basis.
Usage: SetStopContract; {sets a stop for individual contract (entry)}

SetStopLoss(50) ;

SetStopLoss
Sets a stop loss order (money management stop); specifies the amount (in dollars) you
are willing to lose on the position/contract before it is liquidated. Used by the trading
strategy Stop Loss.
Syntax: SetStopLoss(Amount)

Amount: the dollar amount that must be incurred before position/contract is liquidated
Usage: SetStopContract; {can also use SetStopContract}
 SetStopLoss(2); {exits long position when down $2 per contract}

SetStopPosition
Instructs TradeStation to evaluate all stop values of a strategy on a per position basis.
To evaluate all stop values on a per contract (entry) basis, use SetStopContract.
Usage: SetStopPosition;
 SetStopLoss(1200); {places a stop loss order of $1200 for entire position}

SGA_Exp_By_NetSales
Annualized growth rate percentage of sales (calculated from the total revenue divided
by the number of outstanding shares).
Share
Used to specify a contract/share for a particular Buy, SellShort, or exit order.
Usage: Buy 1 Share Next Bar at Market;

Shares
Used to specify the number of contracts/shares for a particular Buy, SellShort, or exit
order.
Usage: Sell 5 Shares Next Bar at Open;

Reserved Words Quick Reference 247
Sign
Returns 1 for a positive num, -1 for a negative num, and 0 for a num of zero.
Syntax: Sign(Num)

Num: a numeric value or expression.
Usage: Value1 = Sign(-9.5687) {returns a value of -1}

Sine
Returns the sine value of num degrees.
Usage: Value1 = Sine(72); {returns 0.9511 when num is 72 degrees}

Skip
Reserved for future use.
Slippage
Returns the slippage per contract from Trade costs section of the strategy’s General
tab.
SnapFundExists
True if snapshot fundamental data exists in the data stream; False otherwise.
Spaces
Specifies the number of blank spaces to add to a text or commentary string.
Usage: Print("Close" + Spaces(5) + NumToStr(Close, 3));

Square
Returns the square (2nd power) of the specified number.
Syntax: Square(Num)

Num: a numeric value or expression
Usage: Value1 = Square(6.23) {returns a value of 38.8219}

SquareRoot
Returns the square root of the specified number.
Syntax: SquareRoot(Num)

Num: a numeric value or expression
Usage: Value1 = SquareRoot(5); {returns a value of 2.2361}

StartDate
Reserved for future use.
StockSplit
Ratio of the stock split reported during a certain period.
Usage: Value2 = StockSplit(2); {returns the split ratio reported 2 periods ago}

StockSplitCount
The number of stock splits that have been reported in a given time frame.

248 APPENDIX C
StockSplitDate
The date on which a stock split was reported during a certain period.
Usage: Value1 = StockSplitDate(3); {date of a stock split reported 3 periods ago}

StockSplitTime
The time at which a stock split occurred during a certain period.
Usage: Value2 = StockSplitTime; {time of the last reported stock split}

Stop
In an entry or exit order, means 'or higher' or 'or lower', depending on the context.
Usage: Buy Next Bar at 65 Stop; {enters a long position at a price of 65 or higher}

Sell Next Bar at 65 Stop; {exits a long position at a price of 65 or lower}

String
Defines a function input that accepts a string expression value.
Usage: Input: MyMessage(String); {accepts a text string value}

StringArray
Defines a function input array that accepts multiple string expressions.
Usage: Input: Messages[n](StringArray); {array that accepts text strings}

StringArrayRef
Defines a function input array that accepts multiple string references.
Usage: Input: Note[n](StringArrayRef); {array that accepts strings by reference}

StringRef
Defines a function input that accepts a string expression by reference.
Usage: Input: SomeText(StringRef); {accepts a text string by reference}

StringSeries
Defines a function input that accepts string expressions that include history.
Usage: Input: SomeText(StringSeries); {accepts text strings with history}

StringSimple
Defines a function input that accepts simple string expressions without history.
Usage: Input: SomeText(StringSimple); {accepts text strings without history}

StrLen
The number of characters that make up a text string.
Syntax: StrLen(String)

String: a text string expression (a variable or text contained within quote marks).
Usage: Value1 = StrLen("Net Profit"); {returns a count of 10 characters}

Reserved Words Quick Reference 249
StrToNum
Returns the numerical value of a text string, zero if the string not numeric.
Syntax: StrToNum(String)

String: a text string expression (a variable or text contained within quote marks).
Usage: Value2 = StrToNum("1170.50"); {returns the numeric value 1117.5}

SumList
Returns the sum of all listed inputs.
Syntax: SumList(Num1[,NumN...])

Num1: the first value or expression
NumN: additional values to add separated by commas

Usage: Value1 = SumList(45, 72, 86, 125, 47); {returns a value of 375}

Sunday
Specifies day of the week Sunday (numeric value = 0).
SymbolName
Returns a string expression representing the symbol name. See also GetSymbolName.
SymbolNumber
Number representing the GlobalServer symbol. See CommodityNumber and Cusip.
SymbolRoot
Returns a text string representing the root of the symbol (for futures and options only).
T
Abbreviation for Time. Returns the closing time of a referenced bar in 24-hour format.
Usage: If T of 1 Bar Ago >= 1100 Then

Buy at Market; {buys at or after 11 AM}

Tangent
Returns the tangent value of num degrees.
Usage: Value1 = Tangent(num); {returns 1 when num is 45 degrees}

Target
Reserved for future use.
TargetType
Reserved for future use.
Text
Retained for backward compatibility.

250 APPENDIX C
Text_Delete
Deletes the specified text object.
Syntax: Text_Delete(TX_Ref)

TX_Ref: a numeric expression representing the object identification number
Returns: status code indicating whether or not operation was successful

Usage1: Text_Delete(3); {deletes text object number 3}
Usage2: Value1 = Text_Delete(2); {returns status code after deleting text object 2}

Text_GetColor
Returns the color value of the specified text object. (see Text_Delete for syntax)

Usage: Value1 = Text_GetColor(4); {returns the color of text object 4}

Text_GetDate
Returns the date of the left edge of the specified text object.
Syntax: Text_Delete(TX_Ref)

TX_Ref: a numeric expression representing the object identification number
Usage: Value1 = Text_GetDate(2); {returns the date of text object 2}

Text_GetFirst
Returns the text object id number for the first object of a specified type.
Syntax: Text_GetFirst(Type)

Type: identifies the origin of the requested first text object
 1 = text created by an analysis technique
 2 = text created by the text drawing object only, and
 3 = text created by either the text drawing object or an analysis technique
Returns: status code indicating whether or not operation is successful

Usage: Value2 = Text_GetFirst(2); {returns the id of first text drawing object}

Text_GetHStyle
Gets the horizontal placement style of the specified text object. (see Text_Delete for syntax)

Returns: 0 for left, 1 for right, 2 for center, or status code if operation not successful
Usage: Value1 = Text_GetHStyle(5); {returns horiz style of text object 5}

Text_GetNext
Returns the text object id for the next object of a specified type after specified object.
Syntax: Text_GetNext(TX_Ref, Type)

TX_Ref: a numeric expression representing the object identification number
Type: identifies the origin of the next text object
 1 = text created by an analysis technique
 2 = text created by the text drawing object only, and
 3 = text created by either the text drawing object or an analysis technique
Returns: status code indicating whether or not operation is successful

Usage: Value2 = Text_GetNext(2,1); {returns the id of analysis text after id 2}

Reserved Words Quick Reference 251
Text_GetString
Returns the text string of the specified text object. (see Text_Delete for syntax)

Usage: TextValue1 = Text_GetString(3); {returns text string of object number 3}

Text_GetTime
Returns the time of the left edge of the specified text object. (see Text_Delete for syntax)

Usage: Value2 = Text_GetTime(4); {returns the time of text object 4}

Text_GetValue
Returns the price (vertical axis) of the specified text object. (see Text_Delete for syntax)

Usage: Value1 = Text_GetValue(2); {returns the price of text object 2}

Text_GetVStyle
Gets the vertical placement style of the specified text object. (see Text_Delete for syntax)

Returns: 0 for top, 1 for bottom, 2 for center, or error code if operation not successful
Usage: Value2 = Text_GetVStyle(5); {returns vert style of text object 5}

Text_New
Creates and draws a new text object at a specified date, time, and price location.
Syntax: Text_New(cDate,Time,Price,Text)

cDate: date in YYYMMDD format
Time: time in HHMM 24-hour format
Price: value or numeric expression of the price
Text: text variable or text expression within quotes
Returns: object number if successful, or error code if operation not successful

Note: Drawing objects are numbered by type in the order they are created, from 0 to n. Therefore, 0 is the
identification number of the first drawing object of that type created, and n is the last object of the same type
created.

Usage: Value1 = Text_New(Date, Time, High + 1, "Stock Split");

Text_SetColor
Changes the color of the specified text object.
Syntax: Text_SetColor(TX_ref, Color)

TX_Ref: a numeric expression representing the object identification number
Color: the color name or numeric value

Usage: Text_SetColor(3,red); {sets text object 3 to color red}

252 APPENDIX C
Text_SetLocation
Moves specified text object to a new date, time, and price location.
Syntax: Text_SetLocation(TX_ref, cDate,Time,Price,Text)

TX_Ref: a numeric expression representing the object identification number
cDate: date in YYYMMDD format
Time: time in HHMM 24-hour format
Price: value or numeric expression of the price
Text: text variable or text expression within quotes
Returns: 0 if successful, or error code if operation not successful

Usage: Value1 = Text_SetLocation(2,990114,1500,24.5); {moves text obj 2}

Text_SetString
Changes the text of a specified text object.
Syntax: Text_SetString(TX_ref, Text)

TX_Ref: a numeric expression representing the object identification number
Text: text variable or text expression within quotes
Returns: 0 if successful, or error code if operation not successful

Usage: Value2 = Text_SetString(1, "New String") ; {changes text for obj 1}

Text_SetStyle
Changes the horizontal and vertical position style for the specified text object.
Syntax: Text_SetStyle(TX_ref, Horiz,Vert)

TX_Ref: a numeric expression representing the object identification number
Horiz: 0 for left, 1 for right, 2 for center
Vert: 0 for top, 1 for bottom, 2 for center
Returns: 0 if successful, or error code if operation not successful

Usage: Value1 = Text_SetStyle(3,0,1) ; {repositions obj 3 to the left-bottom}

Than
Skip word used to improve readability. Ignored during execution.
Usage: If High > than the Highest(Close, 14) Then {any operation}
The
Skip word used to improve readability. Ignored during execution. (see Than)
Then
Precedes the operation(s) to be executed when the matching If condition is true.
Usage: If Condition1 Then Begin
 {Operations done if condition is true}

End ;

This
Used to reference the current Bar.
Usage: Buy This Bar on Close;

Reserved Words Quick Reference 253
Thursday
Specifies day of the week Thursday (numeric value = 4).
Ticks
Reserved for backward compatibility. Replaced with Points.
TickType
The kind of tick that triggered an option core event: Asset, Option, Future, or Model.
Time
Closing time of the current bar in 24-hour HHMM format.
Usage: Value1 = Time; {returns 2130 if the bar time is 9:30pm}

TL_Delete
Deletes the specified trendline from the chart.
Syntax: TL_Delete(TL_Ref)

TL_Ref: a numeric expression representing the trendline identification number
Returns: 0 if operation is successful, or error code if not

Usage1: TL_Delete(2); {deletes trendline number 2}
Usage2: Value1 = TL_Delete(3); {returns status code after deleting trendline 3}

TL_GetAlert
Gets the alert status of the specified trendline object.

TL_Ref: a numeric expression representing the trendline identification number
Returns: 0 = no alert, 1 = Breakout Intrabar, 2 = Breakout on Close

Usage: Value2 = TL_GetAlert(4); {returns alert status for trendline number 4}

TL_GetBeginDate
The date of the starting point for the specified trendline. (see TL_Delete for syntax)

Usage: Value1 = TL_GetBeginDate(2); {returns the start date of trendline 2}

TL_GetBeginTime
The time of the starting point for the specified trendline. (see TL_Delete for syntax)

Usage: Value2 = TL_GetBeginTime(3); {returns the start time of trendline 3}

TL_GetBeginVal
The price (vertical axis) of a trendline’s starting point. (see TL_Delete for syntax)

Usage: Value1 = TL_GetBeginVal(4); {returns the start price of trendline 4}

TL_GetColor
Returns the color value of the specified trendline. (see TL_Delete for syntax)

Usage: Value1 = TL_GetColor(3); {returns the color of trendline 3}

TL_GetEndDate
The date of the ending point for the specified trendline. (see TL_Delete for syntax)

Usage: Value1 = TL_GetEndDate(2); {returns the end date of trendline 2}

254 APPENDIX C
TL_GetEndTime
The date of the ending point for the specified trendline. (see TL_Delete for syntax)

Usage: Value2 = TL_GetEndTime(4); {returns the end time of trendline 4}

TL_GetEndVal
The price (vertical axis) of a trendline’s ending point. (see TL_Delete for syntax)

Usage: Value1 = TL_GetEndVal(3); {returns the end price of trendline 3}

TL_GetExtLeft
True if the specified trendline is extended left, False otherwise. (see TL_Delete for syntax)

Usage: Condition1 = TL_GetExtLeft(12) ; {true if trendline 12 extends left}

TL_GetExtRight
True if the specified trendline is extended right, False otherwise. (see TL_Delete for syntax)

Usage: Condition1 = TL_GetExtRight(5) ; {true if trendline 5 extends right}

TL_GetFirst
Returns the ID number for the first trendline of a specified type.
Syntax: TL_GetFirst(Type)

Type: identifies the origin of the requested first trendline
 1 = trendline created by the current analysis technique only
 2 = trendline created by any analysis technique, and
 3 = trendline created by any other means
Returns: ID if operation successful or error code if not

Usage: Value2 = TL_GetFirst(2); {returns id of first trendline of type}

TL_GetNext
Returns the text object ID for the next object of a specified type after specified object.
Syntax: TL_GetNext(TL_Ref, Type)

TL_Ref: a numeric expression representing the object identification number
Type: (see TL_GetFirst)
Returns: ID if operation successful or error code if not

Usage: Value1 = TL_GetNext(2,1); {returns id of trendline draw object after id 2}

TL_GetSize
The line thickness setting (weight) for the specified trendline. (see TL_Delete for syntax)

Usage: Value2 = TL_GetSize(3); {returns thickness of trendline 3}

Reserved Words Quick Reference 255
TL_GetStyle
The line style for the specified trendline.
Syntax: TL_GetStyle(TL_Ref)

TL_Ref: a numeric expression representing the object identification number
Returns: Tool_Solid = 1 (solid)

Tool_Dashed = 2 (dashed)
Tool_Dotted= 3 (dotted)
Tool_Dashed2= 4 (dashed pattern)
Tool_Dashed3= 5 (dashed pattern)

Usage: Value1 = TL_GetStyle(6); {returns 3 if trendline 6 is dotted}

TL_GetValue
The price (vertical axis) of the specified trendline at date and time.
Syntax: TL_GetStyle(TL_Ref,cDate,Time)

TL_Ref: a numeric expression representing the object identification number
cDate: date in YYYMMDD format
Time: time in HHMM 24-hour format
Returns: price if operation successful or error code if not

Usage: Value2 = TL_GetValue(2,991104,0930); {returns the price of trendline 2}

TL_New
Creates a new trendline using specified start and end points.
Syntax: TL_New(sDate,sTime,sPrice,eDate,eTime,ePrice)

sDate: starting point date in YYYMMDD format
sTime: starting point time in HHMM 24-hour format
sPrice: starting point price
eDate: ending point date in YYYMMDD format
eTime: ending point time in HHMM 24-hour format
ePrice: ending point price
Returns: trendline ID if operation successful, error code if not

Usage: Value1 = TL_New(990107, 0930, 45, 990125, 1600, 37.250);

TL_SetAlert
Sets the alert status for a specified trendline.
Syntax: TL_SetAlert(TL_Ref, Status)

TL_Ref: a numeric expression representing the object identification number
Status: 0=no alert, 1=breakout intrabar alert, 2=breakout on close alert

Usage: TL_SetAlert(3, 1); {sets intrabar alert for trendline 3}

TL_SetBegin
Changes the starting point of a specified trendline.
Syntax: TL_SetBegin(TL_Ref,sDate,sTime,sPrice)

TL_Ref: a numeric expression representing the object identification number
(see TL_New for descriptions of sDate,sTime,sPrice)

Usage: TL_SetBegin(4, 990221, 1015, 107.225);

256 APPENDIX C
TL_SetColor
Changes the color of a specified trendline.
Syntax: TL_SetColor(TL_Ref, Color)

TL_Ref: a numeric expression representing the object identification number
Color: the color name or numeric value

Usage: TL_SetColor(3, Blue); {sets trendline 3 to color blue}

TL_SetEnd
Changes the ending point of a specified trendline.
Syntax: TL_SetEnd(TL_Ref, eDate, eTime, ePrice)

TL_Ref: a numeric expression representing the object identification number
(see TL_New for descriptions of eDate,eTime,ePrice)

Usage: TL_SetEnd(2, 990221, 1515, 207.125);

TL_SetExtLeft
Changes the leftward extension status of a specified trendline.
Syntax: TL_SetExtLeft(TL_Ref, Status)

TL_Ref: a numeric expression representing the object identification number
Status: True turns on leftward extension, False turns it off

Usage: TL_SetExtLeft(2,True); {turns on left extend for trendline 2}

TL_SetExtRight
Changes the rightward extension status of a specified trendline.
Syntax: TL_SetExtRight(TL_Ref, Status)

TL_Ref: a numeric expression representing the object identification number
Status: True turns on rightward extension, False turns it off

Usage: TL_SetExtRight(3,False); {turns off right extend for trendline 3}

TL_SetSize
Changes the line thickness setting (weight) for the specified trendline.
Syntax: TL_SetSize(TL_Ref, Size)

TL_Ref: a numeric expression representing the object identification number
Size: numeric value ranging from 0 (the thinnest) to 6 (the thickest).

Usage: TL_SetSize(2,4); {sets trendline 2 to thickness 4}

Reserved Words Quick Reference 257
TL_SetStyle
Changes line style for the specified trendline.
Syntax: TL_SetStyle(TL_Ref,Type)

TL_Ref: a numeric expression representing the object identification number
Type: Tool_Solid = 1 (solid)

Tool_Dashed = 2 (dashed)
Tool_Dotted= 3 (dotted)
Tool_Dashed2= 4 (dashed pattern)
Tool_Dashed3= 5 (dashed pattern)

Usage: TL_SetStyle(4,Tool_Dashed); {sets trendline 4 to dashed}

To
Used in a For-Loop statement to separate the starting and ending counter values.
Usage: For Value5 = Start To Start + 10 Begin

{Any operations}
End ;

Today
Retained for backward compatibility. Replaced by This Bar.
Tomorrow
Retained for backward compatibility. Replaced by Next Bar.
Tool_Black
Retained for backward compatibility. Replaced by the color name Black.
Tool_Blue
Retained for backward compatibility. Replaced by the color name Blue.
Tool_Cyan
Retained for backward compatibility. Replaced by the color name Cyan.
Tool_DarkBlue
Retained for backward compatibility. Replaced by the color name DarkBlue.
Tool_DarkBrown
Retained for backward compatibility. Replaced by the color name DarkBrown.
Tool_DarkCyan
Retained for backward compatibility. Replaced by the color name DarkCyan.
Tool_DarkGray
Retained for backward compatibility. Replaced by the color name DarkGray.
Tool_DarkGreen
Retained for backward compatibility. Replaced by the color name DarkGreen.

258 APPENDIX C
Tool_DarkMagenta
Retained for backward compatibility. Replaced by the color name DarkMagenta.
Tool_DarkRed
Retained for backward compatibility. Replaced by the color name DarkRed.
Tool_DarkYellow
Retained for backward compatibility. Replaced by the color name DarkYellow.
Tool_Dashed
Represents a dashed line style (2) used with drawing objects.
Tool_Dashed2
Represents a dashed line style (4) used with drawing objects.
Tool_Dashed3
Represents a dashed line style (5) used with drawing objects.
Tool_Dotted
Represents a dotted line style (3) used with drawing objects.
Tool_Green
Retained for backward compatibility. Replaced by the color name Green.
Tool_LightGray
Retained for backward compatibility. Replaced by the color name LightGray.
Tool_Magenta
Retained for backward compatibility. Replaced by the color name Magenta.
Tool_Red
Retained for backward compatibility. Replaced by the color name Red.
Tool_Solid
Represents a solid line style (1) used with drawing objects.
Tool_White
Retained for backward compatibility. Replaced by the color name White.
Tool_Yellow
Retained for backward compatibility. Replaced by the color name Yellow.
Total
Specifies the number of shares/contracts to exit from a position created by pyramiding.
Usage: Sell 5 Contracts Total Next Bar at Market;
{Exits five contracts/shares from the entire long position}

Reserved Words Quick Reference 259
TotalBarsLosTrades
The total number of bars that elapsed during losing trades for all closed trades.
Usage: Value2 = TotalBarsLosTrades ;

TotalBarsWinTrades
The total number of bars that elapsed during winning trades for all closed trades.
Usage: Value1 = TotalBarsWinTrades ;

TotalTrades
The total number of closed trades in the current strategy.
TrailingStopAmt
Retained for backward compatibility with previous versions of the product. Replaced
by the reserved word SetDollarTrailing.
TrailingStopFloor
Retained for backward compatibility with previous versions of the product. Replaced
by the reserved word SetPercentTrailing.
TrailingStopPct
Retained for backward compatibility with previous versions of the product. Replaced
by the reserved word SetPercentTrailing.
True
Represents a true, or correct, conditional expression.
TrueFalse
Defines an input that expects a true/false expression.
Usage: Input: Switch(TrueFalse); {accepts a true/false input for Switch}

TrueFalseArray
Defines an input that expects a true/false expression for each array element.
Usage: Input: MyArray[n](TrueFalseArray) {accepts t/f inputs by value}

TrueFalseArrayRef
Defines an input that expects a true/false variable reference for each array element.
Usage: Input: MyArray[n](TrueFalseArrayRef) {accepts t/f inputs by reference}

TrueFalseRef
Defines an input that expects a true/false variable reference.
Usage: Input: Switch(TrueFalseRef) {accepts a t/f input by reference}

TrueFalseSeries
Defines an input as a true/false series expression.
Usage: Input: Flag(TrueFalseSeries); {taccepts a t/f input with history}

260 APPENDIX C
TrueFalseSimple
Defines an input as a true/false simple expression.
Usage: Input: Switch(TrueFalseSimple); {accepts a t/f input without history}

TtlDbt_By_NetAssts
Returns the total debt (long + short term) divided by total assets.
Tuesday
Specifies day of the week Tuesday (numeric value = 2).
Under
Used only with Crosses to detect a value crossing under, or below, another value.
Usage: If Value1 Crosses Under Value2 Then {Any Operation} ;

UnionSess1EndTime
Latest session 1 end time of all data in a multi-data chart.
UnionSess1FirstBar
Earliest session 1 first bar time of all data in a multi-data chart.
UnionSess1StartTime
Earliest session 1 start time of all data in a multi-data chart.
UnionSess2EndTime
Latest session 2 end time of all data in a multi-data chart.
UnionSess2FirstBar
Earliest session 2 first bar time of all data in a multi-data chart.
UnionSess2StartTime
Earliest session 2 start time of all data in a multi-data chart.
Units
Retained for backward compatibility.
UNSIGNED
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Until
Reserved for future use.
UpperStr
Used to convert a string expression to uppercase letters.
Usage1: Value1 = UpperStr("My TextString"); {returns "MY TEXTSTRING"}

UpTicks
Number of ticks on a bar whose value is higher than the tick immediately preceding it.

Reserved Words Quick Reference 261
V
Abbreviation for Volume. Returns the volume of shares/contracts of a referenced bar.
Usage: If MyVol > V of 1 Bar Ago Then SellShort at Close;
Var
Declares a variable name to use throughout your analysis technique. Shorthand form.
Usage: Var: Count(10); {declares the variable Count with an initial value of 10}

Variable
Declares a variable name to use throughout your analysis technique.
Usage: Variable: Val(5); {declares the variable Val with an initial value of 5}

Variables
Declares multiple variable names separated by commas.
Usage: Variables: Countup(0),Countdown(10); {declares and initializes variables}

Vars
Declares multiple variable names separated by commas. Shorthand form.
Usage: Vars: MyVal(2), MyPrice(31); {declares and initializes variables}

VARSIZE
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
VARSTARTADDR
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
VOID
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Volume
Returns the number of shares/contracts traded for the referenced bar.
Usage: If TestVol > Volume of 3 Bars Ago Then Buy at Market;
Was
Skip word ignored during execution.
Usage: If Close was < than the Lowest(Close, 14) Then {any operation} ;
Wednesday
Specifies day of the week Wednesday (numeric value = 3).
While
Defines instructions that are executed until a true/false expression returns False.
Usage: While Condition1 Begin

{any operations};

End; {continues to loop until the Condition is no longer true}

262 APPENDIX C
White
Specifies color White (numeric value = 8) for plots and backgrounds.
WORD
Reserved for use with custom DLLs designed for EasyLanguage and ELKIT32.DLL.
Year
Year on specified calendar date, in short form (last 2 or 3 digits of year)
Returns the year (YYY) portion of the specified calendar date.
Syntax: Year(cDate);

cDate: numeric expression for the date in YYMMDD or YYYMMDD format.
Usage: Value1 = Year(1011004) {returns the year 101 representing 2001}

Yellow
Specifies color Yellow (numeric value = 7) for plots and backgrounds.
Yesterday
Retained for backward compatibility. Refers to the previous bar.

EasyLanguage Tool Kit Library 263
A P P E N D I X D

EasyLanguage Tool Kit Library
Functionality
The EasyLanguage Tool Kit Library is implemented in the form of a dynamic-link
library. It provides useful functions that can be called from any user DLL. It is
commonly used to find the address of an offset of an EasyLanguage data object from
within a user DLL.

Components
There are four components in the EasyLanguage Tool Kit Library: a header file
(ELKIT32.H), two link-time library files (ELKITVC.LIB and ELKITBOR.LIB), and
an executable DLL file (ELKIT32.DLL). 'ELKIT32.H' is a standard C header file. It
contains the function headers for all the functions that are available in 'ELKIT32.DLL'.
The '.LIB' files should be used when linking a user DLL that calls the ELKIT32.DLL
functions. 'ELKITVC.LIB' should be used when working in the Microsoft Visual C++
environment while 'ELKITBOR.LIB' should be used in the C++ Builder environment.

FindAddress Functions

Syntax:

LPFLOAT FindAddress_Array(LPFLOAT lpArray[ArrayPosi-

tion], int nSpaceOfs, int nOfs, DWORD dwStartAddr,

DWORD dwArraySize);

Parameters:
lpArray is a pointer to an array in EasyLanguage. nSpaceOfs specifies the offset of array
elements, forward if nSpaceOfs is positive and backwards if nSpaceOfs is negative. nOfs
specifies the bar offset, backwards if nOfs is positive or forward if nOfs is negative. dw-
StartAddr is the starting address of the buffer as determined by the EasyLanguage keyword
ArrayStartAddr, and dwArraySize is the size of the buffer associated with the array as de-
termined by the EasyLanguage keyword ArraySize.
Returns:
A pointer to the value of an Array element offset by nOfs.

Notes:
dwArraySize is the size of the buffer associated with the array. This value is obtained
from EasyLanguage by calling the ArraySize function. dwStartAddr is the starting

FindAddress_Array

264 APPENDIX D
address of the buffer. The ArrayStartAddr function should be called to obtain this
value.

Example:
// Example of FindAddress_Var in MYLIB.DLL

float FindArray(LPFLOAT lpVar, int nSpaceOfs, int nOfs,

DWORD dwStartAddr, DWORD dwArraySize)

{

LPFLOAT lpNewAddr;

// starting at element 7, go back 3 elements and 2 bars

lpNewAddr = FindAddress_Array(lpArray, nSpaceOfs, nOfs,

dwStartAddr, dwArraySize);

return *lpNewAddr;

}

...

{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",float,"FindArray",multiple;

Var: dwStartAddr(0),dwArraySize(0),Counter(0),Result(0);

Array: MyArray [10](0);

if CurrentBar = 11 then Begin

For Counter = 0 to 10 Begin

MyArray[Counter] = Close[Counter];

End;

End;

dwStartAddr = ArrayStartAddr(MyArray);

dwArraySize = ArraySize(MyArray);

Result = FindArray((LPFLOAT)&MyArray[7],(int) -3,(int) 2,

(DWORD)dwStartAddr, (DWORD)dwArraySize);

Plot1(Result, "FindArray");

EasyLanguage Tool Kit Library 265
Syntax:

LPLONG FindAddress_Close(LPLONG lpClose, int nOfs);

Parameters:
lpClose is a pointer to a Close array element in EasyLanguage, nOfs specifies the bar
offset. The offset is backwards if nOfs is positive or forward if nOfs is negative.

Remarks:
A pointer to the value of a Close array element offset by nOfs.

Note:
The value contained at the pointer location returned by the FindAddress_Close
function does not have the price scale applied. The values received must be divided by
the EasyLanguage Data Information function PriceScale in order to obtain the proper
Close value.

Example:

// Example of FindAddress_Close

long MyClose(LPLONG lpClose, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_Close(lpClose,nOfs); // go back 3

bars

return *lpNewAddr;

}

...

{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",long,"MyClose",multiple;

Var: Result(0);

Result = MyClose((LPLONG)&Close,(int) 3);

Plot1(Result, "MyClose");

FindAddress_Close

266 APPENDIX D
Syntax:

LPLONG FindAddress_Date(LPLONG lpDate, int nOfs);

Parameters:
lpDate is a pointer to a Date array element in EasyLanguage. nOfs specifies the bar offset.
The offset is backwards if nOfs is positive or forward if nOfs is negative.
Returns:
A pointer to the value of a Date array element offset by nOfs.

Note:
All Date values are in Julian date format. If a 'YYMMDD' format is desired, you must
call the tool kit function JulianToDate.

Syntax:

LPLONG FindAddress_DownTicks(LPLONG lpDownTicks, int

nOfs);

Parameters:
lpDownTicks is a pointer to a DownTicks array element in EasyLanguage. nOfs specifies
the bar offset. The offset is backwards if nOfs is positive or forward if nOfs is negative.
Returns:
A pointer to the value of a DownTicks array element offset by nOfs.

Example:

// Example of FindAddress_DownTicks

long MyDownTicks(LPLONG lpDownTicks, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_DownTicks(lpDownTicks,nOfs); //

go back 3 bars

return *lpNewAddr;

}

...

FindAddress_Date

FindAddress_DownTicks

EasyLanguage Tool Kit Library 267
{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",long,"MyDownTicks",multiple;

Var: Result(0);

Result = MyDownTicks((LPLONG)&DownTicks,(int) 3);

Plot1(Result, "MyDownTicks");

Syntax:

LPLONG FindAddress_High(LPLONG lpHigh, int nOfs);

Parameters:
lpHigh is a pointer to a High array element in EasyLanguage. nOfs specifies the bar offset.
The offset is backwards if nOfs is positive or forward if nOfs is negative.

Returns:
A pointer to the value of a High array element offset by nOfs.

Note:
The value contained at the pointer location returned by the FindAddress_High function
does not have the price scale applied. The values received must be divided by the EasyLan-
guage Data Information function PriceScale.
Example:

// Example of FindAddress_High

long MyHigh(LPLONG lpHigh, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_High(lpHigh,nOfs); // back 3 bars

return *lpNewAddr;

}
...

{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",long,"MyHigh",multiple;

Var: Result(0);

Result = MyHigh((LPLONG)&High,(int) 3) / PriceScale;

Plot1(Result, "MyHigh");

FindAddress_High

268 APPENDIX D
Syntax:

LPLONG FindAddress_Low(LPLONG lpLow, int nOfs);

Parameters:
lpLow is a pointer to a Low array element in EasyLanguage. nOfs specifies the bar offset.
The offset is backwards if nOfs is positive or forward if nOfs is negative.
Returns:
A pointer to the value of a Low array element offset by nOfs.

Note:
The value contained at the pointer location returned by the FindAddress_Low function
does not have the price scale applied. The values received must be divided by the
EasyLanguage Data Information function PriceScale.

Example:

// Example of FindAddress_Open

long MyLow(LPLONG lpLow, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_Low(lpLow,nOfs); // go back 3

bars

return *lpNewAddr;

}

...

{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",long,"MyLow",multiple;

Var: Result(0);

Result = MyLow((LPLONG)&Low,(int) 3) / PriceScale;

Plot1(Result, "MyLow");

FindAddress_Low

EasyLanguage Tool Kit Library 269
Syntax:

LPLONG FindAddress_Open(LPLONG lpOpen, int nOfs);

Parameters:
lpOpen is a pointer to a Open array element in EasyLanguage. nOfs specifies the bar offset.
The offset is backwards if nOfs is positive or forward if nOfs is negative.
Returns:
A pointer to the value of a Open array element offset by nOfs.

Note:
The value contained at the pointer location returned by the FindAddress_Open function
does not have the price scale applied. The values received must be divided by the
EasyLanguage Data Information function PriceScale.

Example:

// Example of FindAddress_Open

long MyOpen(LPLONG lpOpen, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_Open(lpOpen,nOfs); // go back 3

bars

return *lpNewAddr;

}

...

{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL", long, "MyOpen", multiple;

Var: Result(0);

Result = MyOpen((LPLONG)&Open,(int) 3) / PriceScale;

Plot1(Result, "MyOpen");

FindAddress_Open

270 APPENDIX D
Syntax:

LPLONG FindAddress_OpenInt(LPLONG lpOpenInt, int nOfs);

Parameters:
lpOpenInt is a pointer to a OpenInt array element in EasyLanguage. nOfs specifies the bar
offset. The offset is backwards if nOfs is positive or forward if nOfs is negative.

Returns:
A pointer to the value of a OpenInt array element offset by nOfs.

Example:

// Example of FindAddress_OpenInt

long MyOpenInt(LPLONG lpOpenInt, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_OpenInt(lpOpenInt,nOfs); // go

back 3 bars

return *lpNewAddr;

}

...

{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",long,"MyOpenInt",multiple;

Var: Result(0);

Result = MyOpenInt((LPLONG)&OpenInt,(int) 3);

Plot1(Result, "MyOpenInt");

FindAddress_OpenInt

EasyLanguage Tool Kit Library 271
Syntax:

LPINT FindAddress_Time(LPINT lpTime, int nOfs);

Parameters:
lpTime is a pointer to a Time array element in EasyLanguage. nOfs specifies the bar offset.
The offset is backwards if nOfs is positive or forward if nOfs is negative.
Returns:
A pointer to the value of a Time array element offset by nOfs.

Note:
All time values are in minutes-since-midnight format. If an 'HHMM' format is desired,
you must call the ELKIT32 function MinuteToTime.

Syntax:

LPLONG FindAddress_UpTicks(LPLONG lpUpTicks, int nOfs);

Parameters:
lpUpTicks is a pointer to a UpTicks array element in EasyLanguage. nOfs specifies the
bar offset. The offset is backwards if nOfs is positive or forward if nOfs is negative.

Returns:
A pointer to the value of a UpTicks array element offset by nOfs.
Example:

// Example of FindAddress_UpTicks

long MyUpTicks(LPLONG lpUpTicks, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_UpTicks(lpUpTicks,nOfs); // go

back 3 bars

return *lpNewAddr;

}

...

FindAddress_Time

FindAddress_Upticks

272 APPENDIX D
{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",long,"MyUpTicks",multiple;

Var: Result(0);

Result = MyUpTicks((LPLONG)&UpTicks,(int) 3);

Plot1(Result, "MyUpTicks");

Syntax:

LPFLOAT FindAddress_Var(LPFLOAT lpVar, int nOfs, DWORD

dwStartAddr, DWORD dwVarSize);

Parameters:
lpVar is a pointer to a Variable in EasyLanguage. nOfs specifies the bar offset. The offset
is backwards if nOfs is positive or forward if nOfs is negative. dwStartAddr is the starting
address of the buffer as determined by the EasyLanguage keyword VarStartAddr keyword,
and dwVarSize is the size of the buffer associated with the variable as determined by the
EasyLanguage keyword VarSize keyword.
Returns:
A pointer to the value of a Variable array element offset by nOfs.

Remarks:
dwVarSize is the size of the buffer associated with the variable. This value is obtained from
EasyLanguage by calling the VarSize function. dwStartAddr is the starting address of the
buffer. The VarStartAddr function should be called to obtain this value.
Example:

// Example of FindAddress_Var in MYLIB.DLL

float FindAVar(LPFLOAT lpVar, int nOfs, DWORD dwStar-

tAddr, DWORD dwVarSize)

{

LPFLOAT lpNewAddr;

// returns the equivalent of MyVar[2] since nOfs == -1

lpNewAddr = FindAddress_Var(lpVar, nOfs, dwStartAddr,

dwVarSize);

return *lpNewAddr;

}

FindAddress_Var

EasyLanguage Tool Kit Library 273
...

{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",float,"FindAVar",multiple;

Var: MyVar(0), dwStartAddr(0), dwVarSize(0), Result(0);

MyVar = Close;

dwStartAddr = VarStartAddr(MyVar);

dwVarSize = VarSize(MyVar);

Result = FindAVar((LPFLOAT)&MyVar,(int) 2, (DWORD)dwStar-

tAddr, (DWORD)dwVarSize);

Plot1(Result, "FindAVar");

Syntax:

LPLONG FindAddress_Volume(LPLONG lpVolume, int nOfs);

Parameters:
lpVolume is a pointer to a Volume array element in EasyLanguage. nOfs specifies the bar
offset. The offset is backwards if nOfs is positive or forward if nOfs is negative.
Returns:
A pointer to the value of a Volume array element offset by nOfs.

Example:

// Example of FindAddress_Volume

long MyVolume(LPLONG lpVolume, int nOfs)

{

LPLONG lpNewAddr;

lpNewAddr = FindAddress_Volume(lpVolume,nOfs); // go back

3 bars

return *lpNewAddr;

}

...

FindAddress_Volume

274 APPENDIX D
{ EasyLanguage Example }

DefineDLLFunc: "MYLIB.DLL",long,"MyVolume",multiple;

Var: Result(0);

Result = MyVolume((LPLONG)&Volume,(int) 3);

Plot1(Result, "MyVolume");

Conversion Functions

Syntax:

WORD DateToJulian(DWORD dwDate);

Parameters:
dwDate is a date specified in "YYMMDD" format.

Returns:
The Julian date for the specified "YYMMDD" formatted date.

Notes:
This function converts a date value from its 'YYMMDD' format to the Julian calendar
format.

Date Logic for dates after the 12/31/1999 will be calculated by counting the number of
years since 1900; therefore, Jan. 1st, 2000 will be represented in EasyLanguage as 100/
01/01, etc.

Syntax:

DWORD JulianToDate(WORD wJulianDay);

Parameters:
wJulianDay is a date specified in "YYMMDD" format.
Returns:
The date converted to 'YYMMDD' format from a Julian date.
Note:
Date Logic for dates after the 12/31/1999 will be calculated by counting the number of
years since 1900; therefore, Jan. 1st, 2000 will be represented in EasyLanguage as 100/01/
01, etc.

DateToJulian

JulianToDate

EasyLanguage Tool Kit Library 275
Syntax:

int MinuteToTime(int nMinutes);

Parameters:
nMinutes is the number of minutes since midnight.
Returns:
Integer representations of Time in ‘HHMM’ format.

Note:
This function converts a time value from the minutes-since-midnight format to the
'HHMM' format.

Syntax:

int TimeToMinute(int nTime);

Parameters:
nTime is an integer representation of Time in 'HHMM' format.

Returns:
An integer representation of minutes since midnight.

MinuteToTime

TimeToMinute

276 APPENDIX D

Index
Symbols
#BEGINALERT ...38, 211
#BEGINCMTRY ...64, 211
#BEGINCMTRYORALERT39, 65, 211
#END ..211

A
A (skip word) ..211
AB_AddCell ...154, 212
AB_AddCellRange ...212
AB_AverageCells ...212
AB_AveragePrice ...212
AB_CellCount ...212
AB_GetCellChar ..157, 213
AB_GetCellColor158, 213
AB_GetCellDate ..158, 213
AB_GetCellTime ..159, 213
AB_GetCellValue159, 213
AB_GetNumCells ..160, 213
AB_GetZoneHigh ..160, 213
AB_GetZoneLow ..161, 214
AB_High ...161, 214
AB_Low ...162, 214
AB_Median ..214
AB_Mode ...214
AB_NextColor ...214
AB_NextLabel ...214
AB_RemoveCell ..156, 215
AB_RowHeight ...215

AB_RowHeightCalc ...215
AB_SetActiveCell156, 215
AB_SetRowHeight155, 215
AB_SetZone ...155, 215
AB_StdDev ..216
Above ...216
AbsValue ..216
Accumulative Calculations

generating orders for next bar, calculations for52
updating every tick, calculations for52

ActivityBar Studies
bar status, obtaining163, 218
cell color, obtaining158, 213
cell date, obtaining ...158, 213
cell time, obtaining ..159, 213
cell value, obtaining159, 213
cells

adding ..154, 212
removing ..156, 215

highest cell price, obtaining161, 214
left side of bar, specifying164, 231
lowest cell price, obtaining162, 214
number of cells, obtaining160, 213
price markers, specifying placement156, 215
referencing ActivityBar data using data alias 163, 216
right side of bar, specifying164, 243
row height, specifying155, 215
text string, obtaining157, 213
understanding ...153

278 The TradeStation Technologies EasyLanguage Reference Guide
zone
height, obtaining ..160, 213
low price, obtaining161, 214
properties, specifying155, 215

ActivityData ...163, 216
Addition, performing ...9
Additional EasyLanguage Resources2
AddToMovieChain101, 216
Advanced Tips

auto-detect loop, understanding15
calculation time, speeding up52
conditional expressions, writing13
division by zero ..10
series arrays, working with44
series values, assigning to inputs28
series variables, working with24

Ago ..216
Alert ...35, 216
AlertEnabled ...37, 216
Alerts

Alert Statement ..35
compiler directives ...38
historical data and ..35
trendlines

obtaining alert status ..84
setting alert status ...94

Aliases, see Data Aliases
All ..216
An (skip word) ..217
Analysis Commentary ..58
Analysis Commentary, pointer61
AND ..11, 217
Arctangent ...217
Arguments, see Parameters
Array ...217
Arrays

Array Declaration Statement41
Array Element Assignment Statement42
dimensions ...40
DLLs referencing ...44
errors, runtime ..44
functions, referencing previous values of arrays in .57
loops

populating arrays using loops43
sorting arrays using loops57

parameters, declaring arrays as56
populating ..43
series arrays, working with44
sorting ..57
understanding ...40
values

assigning to elements ...42
referencing ...43

ARRAYSIZE ..217
ARRAYSTARTADDR ..217
At (skip word) ..217
At$..217
AtCommentaryBar ...62, 217
Auto-detect Loop, understanding15
Auto-Detect, MaxBarsBack ...15
Automating a Trading Strategy, see Trading Strategy

Testing Engine
AvgBarsLosTrade ...217
AvgBarsWinTrade ...218
AvgEntryPrice ..218
AvgList ...218
AVI Files, playing ..100

B
Backtesting Trading Strategies, see Backtesting under

Trading Strategy Testing Engine
Bar ..218
BarInterval ...218
Bars ..218
Bars Ago, using ...13
BarsSinceEntry ..218
BarsSinceExit ..218
BarStatus ..163, 218
BarType ...218
Based (skip word) ...219
Begin ...219
Below ...219
Beta ..219
BigPointValue ..219
Black ...219
Block IF-THEN Statement ..30
BlockNumber ...219
Blue ..219
BOOL ..219
Boolean Expressions ..8
Bouncing Ticks ..116
BoxSize ...219
Brackets ...7
Breakeven StopFloor ...132
BreakEvenStopFloor ..219
Built-in Stops, see Stops
Buy ..119, 220
By (skip word) ..220
BYTE ..220

C
C ...7, 220
C and C++, see DLL Functions
Calculation Time, decreasing52
Cancel ...36, 220
Canceling Orders ...112

Index 279
Category ..220
Ceiling ...220
CHAR ..221
CheckAlert ...36, 37, 221
CheckCommentary ...221
ClearDebug ...221
Close ...7, 221
Close at End of Day ...133
Close Orders ..107
Colon, definition ..7
Colors

numeric equivalents ...209
plot foreground, changing

TradeStation ...137, 139
text

obtaining ..72
setting ...78

trendlines
obtaining ..87
setting ...95

Comma, definition ...6
Commentary

Commentary Statement ..59
compiler directives ...64
jump words ..61
working with ..58

Commentary ...59, 221
CommentaryCL ...61, 221
CommentaryEnabled63, 221
Commission ...221
CommodityNumber ...221
Comparing Expressions ...11
Compiler Directives

alerts ...38
commentary ...64

Compression, see Compression under Data
Conditional Expressions ..8, 13
Contract ..221
Contracts ..221
Contracts/Shares, number to use to open a position ..120
Control

expression ..32
structures ..28
variable ...33

Conversion Functions ..274
Cosine ...222
Cost ..222
Cotangent ..222
Counters, using ..21, 32, 49
Cross ...222
Crosses ...222
Crosses Over ...11
Crosses Under ..11
Curly Brackets, definition ..7

Current ...222
Current Bar, understanding4, 15
CurrentBar ...222
CurrentContracts ...222
CurrentDate ...222
CurrentEntries ..222
CurrentTime ...20, 222
CustomerID ...222
Cyan ..222

D
D ...7, 223
DailyLimit ...223
DarkBlue ..223
DarkBrown ..223
DarkCyan ..223
DarkGray ..223
DarkGreen ..223
DarkMagenta ...223
DarkRed ...223
Data

ActivityData ...153, 163
aliases, see Data Aliases
appending to text files ..66
charts, evaluating data for ..4
compression

strategy backtesting ... 114
date format ...15
functions, using functions with data aliases46
historical data, testing with trading strategies 113
MaxBarsBack setting, see MaxBarsBack
outputting ...58, 66
pointer data types, see DLL Functions
previous values, referencing13
printing ...66
real-time/delayed data, monitoring for trading strategies

106
referencing for each bar ...7
streams, referencing ...46
time format ...18
trading strategies, evaluating data for105
types, see DLL Functions

Data Aliases
data streams, referencing different46
functions

parameters, using data aliases in function parameters
47

using functions with data aliases46
no data alias specified ..47

Data Streams, referencing ..46
DataCompression ...223
DataInUnion ...223
DataN ...223

280 The TradeStation Technologies EasyLanguage Reference Guide
Date ..7, 16, 223
Dates, working with ...15
DateToJulian ...223, 274
Day ..224
DayOfMonth ...224
DayOfWeek ..224
Days ..224
Debug Window, using ..66
Declaring

arrays ..41
inputs ..26
parameters ..55
variables ...22

Default ...224
Define Feature, functions ...45
DefineCustField ...224
DEFINEDLLFUNC ..224
DeliveryMonth ..224
DeliveryYear ...224
Description ...224
Dividend ..224
Dividend_Yield ..224
Division by Zero ..10
Division, performing ..9
DLL Functions

arrays, referencing ...44
data types ...170
defining ..170
extension kit ...177
pointer data types ...171
using ...173

Dllr Risk Trailing ...133
Does (skip word) ...225
DOUBLE ...225
DownTicks ..7, 225
DownTo ...225
Drawing

text on price charts ...69
trendlines on price charts ...81

DWORD ...225
Dynamic Link Libraries (DLLs), see DLL Functions

E
EasyLanguage Dictionary, using45
EasyLanguage DLL Extension Kit169
EasyLanguage Resources and Support2
EasyLanguage Support Center2
EasyLanguage Tool Kit Library263

composition ..177
Conversion Functions ..274
FindAddress Functions ..263

EasyLanguage Toolkit Library177
EasyLanguage, defined ..2

EasyLanguageVersion225
EL_DateStr ...225
ELDate ...16
ELKIT32.DLL ...177
ELKIT32.H ..177
ELKITBOR.LIB ..177
ELKITVC.LIB ...177
Else ..225
End ..225
Entries

execution method, specifying121, 123
exits, tying exits to an entry125, 129
limiting per position ...110
naming ...122
price, specifying ...121, 123
shares/contracts, specifying number of120, 122

Entry ...225
EntryDate ..226
EntryPrice ...226
EntryTime ..226
EPS ..226
Errors

arrays, run time ..44
division by zero, avoiding ..10
EasyLanguage syntax errors179
text ...69, 210
trendlines ..82, 210

Execution Method
Buy ...121
ExitLong ..127
ExitShort ..130
Sell ...123
understanding ...104

ExitDate ..226
ExitLong ..243
ExitPrice ..226
Exits

entries, tying exits to125, 129
execution method ...127, 130
price, tying to bar of entry127, 131
shares/contracts, specifying number of125, 129
stops, see Stops

ExitTime ..226
Expert Commentary, see Commentary
Expressions

comparing ..11
control ..32
numeric ..8
order of precedence ..9
previous values, referencing13
text string ...8
true/false (also conditional, logical, boolean)8, 13

ExpValue ..226

Index 281
F
False ...226
File ..226
FileAppend ...68, 227
FileDelete ...227
Files, outputting to ...66
Filling Orders, precedence of, see Fill precedence under

Orders
Find Feature, functions ..45
FindAddress Functions ..263
FindAddress_Array ...263
FindAddress_Close ...265
FindAddress_Date ...266
FindAddress_DownTicks266
FindAddress_High ...267
FindAddress_Low ...267
FindAddress_Open ...269
FindAddress_OpenInt270
FindAddress_Time ...271
FindAddress_Upticks271
FindAddress_Var ...272
FindAddress_Volume ..273
FirstNoticeDate ...227
FLOAT ...227
Floor ...227
For ..227
For Loop ..33
FracPortion ...227
Friday ...227
From (skip word) ...227
Function Value Assignment Statement48
Functions

also see Reserved Words
arrays as parameters in ...56
assigning values to ...48
counters, series functions as49
data aliases, using functions with46
Define feature ..45
DLL Functions, see DLL Functions
EasyLanguage Dictionary, using45
Find feature ..45
Function Value Assignment Statement48
parameters, see Parameters
referencing previous value of46
series ..50
simple ...49
understanding ...44
writing ..48

G
Generate Orders for Next Bar Calculation52
GetBackgroundColor ..227
GetCDRomDrive ..228

GetExchangeName ...228
GetPlotBGColor ..228
GetPlotColor ...228
GetPlotWidth ...228
GetStrategyName ...228
GetSymbolName ..228
GetSystemName ..228
Gr_Rate_P_EPS ..228
Green ...228
GrossLoss ..228
GrossProfit ...229

H
H ...7, 229
Hard Brackets, definition ...7
Help System and Jump Words61
HELP_KEY WinHelp API Call and Jump Words61
High ..7, 229
Higher ...229
HistFundExists ..229
Historical Testing, see Backtesting under Trading Strategy

Testing Engine

I
I ...229
I_AvgEntryPrice ...229
I_ClosedEquity ..229
I_CurrentContracts ..229
I_MarketPosition ...229
I_OpenEquity ...229
If ...230
IF-THEN Statement

Block IF-THEN ...30
IF-THEN ..28
IF-THEN Else ..30
nesting ..31

Ignoring Statements Using Compiler Directives
alerts ...38
commentary ...64

IncludeSystem ..230
Indicators

jump words, indicators as ..61
TradeStation

adding ..137
bar chart, displaying as136
color, setting ..137, 139
formatting ..136
naming ...137
width, setting ..137, 140
writing for ..136

Infinite Loops ...32
InitialMargin ..230
Input(s) ..26, 230

282 The TradeStation Technologies EasyLanguage Reference Guide
Inputs (also see Parameters)
Input Declaration Statement26, 55
series values, assigning to ..28
types ...25
using ...25
values, referencing ...26

Inside the Bar Technology, see ActivityBar Studies
InStr ...230
INT ..230
IntPortion ...230
Is (skip word) ..230

J
JulianToDate ...17, 231, 274
Jump Words and Commentary61

L
L ...7, 231
LargestLosTrade ...231
LargestWinTrade ...231
LastCalcJDate ..231
LastCalcMMTime ..231
LastTradingDate ...231
LeftSide ..164, 231
LeftStr ...231
LightGray ..231
Limit ...231
Limit Orders ...109
Log ..231
Logical

expressions ...8
operators ...11

LONG ..232
Long Positions

closing ..122, 124
opening ...119

Loops
arrays

populating ..43
sorting ..57

control
expression ..32
variables ...33

For Loop ..33
infinite ..32
While Loop ..31

Losses, limiting, see Stops
Low ..7, 232
Lower ...232
LowerStr ..232
LPBOOL ...232
LPBYTE ...232
LPDOUBLE ..232

LPDWORD ...232
LPFLOAT ...232
LPINT ...232
LPLONG ...232
LPSTR ...232
LPWORD ...232

M
Magenta ...232
MakeNewMovieRef101, 233
Margin ...233
Market ...233
Market If Touched (MIT)

Buy ...121
ExitLong ..127
ExitShort ..130
Sell ...123

Market Orders ..107
MarketPosition ..233
Mathematical Operators ...9
MaxBarsBack

Auto Detect setting ..15
definition ..4, 14
ProbabilityMap studies ..147
User-defined setting ...15

MaxBarsBack ...233
MaxBarsForward ..233
MaxConsecLosers ...233
MaxConsecWinners ...233
MaxContracts ...233
MaxContractsHeld ...233
MaxEntries ...233
MaxIDDrawDown ..233
Maximum Number of Bars Study Will Reference Setting,

see MaxBarsBack
MaxList ...234
MaxList2 ..234
MaxPositionLoss ...234
MaxPositionProfit ...234
MessageLog ...234
MidStr ...234
MinList ...234
MinList2 ..234
MinMove ...235
MinutesToTime ..19
MinuteToTime ...275
MIT, see Market If Touched (MIT)
Moc ..235
Mod ..235
Monday ...235
MoneyMgtStopAmt ...235
Month ...235
Movie Files, see Video Files

Index 283
Multimedia Files
AVI files, playing ...100
WAV files, playing ...100

MULTIPLE ..235
Multiplication, performing ...9
Music Files, see Sound Files

N
Neg ..235
Nesting IF-THEN Statements31
NetProfit ..235
NewLine ...235
Next ..235
NoPlot ...142, 144, 236
Not ..236
NthMaxList ...236
NthMinList ...236
Numeric ...236
Numeric Expressions ...8
Numeric Parameters ...52
NumericArray ...236
NumericArrayRef ...236
NumericRef ...236
NumericSeries ..236
NumericSimple ..236
NumFutures ...237
NumLosTrades ...237
NumToStr ..237
NumWinTrades ...237

O
O ...7, 237
Of (skip word) ..237
OI ...7
On (skip word) ..237
Online User Manual and Jump Words61
Open ..7, 237
OpenInt ...7, 237
OpenPositionProfit ..237
Operators

definition ..6, 9
logical ...11
mathematical ..9
relational ..10
string ..9

OR ...11, 237
Or Higher ...104, 109, 111
Or Lower ..104, 109, 111
Order of Precedence, controlling9
Orders

acceptable orders ..109
bouncing ticks ..116
built-in stops, see Stops

canceling .. 112
execution methods, see Execution Method
exit price, tying to bar of entry127, 131
exits to entries, tying125, 129
fill precedence

close orders ..107
limit orders ...109
market orders ...107
stop orders ..109

fill prices ..106
naming ...122
open entries per position, limiting 110
pyramiding, effect on order placement 111
rules determining which to fill107
shares, number to use to open position109
shares/contracts, specifying number to use ..120, 122,

125, ...129
stand-by orders ... 111
stops, see Stops
trading verbs .. 119
trading verbs, see Trading Verbs
understanding ...104
writing ..104

Origin Type of Text Object ..75
Output Methods

commentary ...58
Debug window ...66
file ..66
printer ...66

Over ..237

P
Pager_DefaultName ...238
Pager_Send ...238
PaintBar Studies

adding ..142
bar range to paint, specifying142
color, setting ...142
naming ...142
removing ..144
width, setting ..142
writing ..142

Parameters
arrays, using as parameters56
data aliases in ...46
declaring ..55
Input Declaration Statement55
numeric ..52
offsetting values passed into functions as46
reference ..53
series ..53
simple ...53
text string ...52

284 The TradeStation Technologies EasyLanguage Reference Guide
true/false ...52
variables as ...53

Parentheses
definition ..6
precedence, order of ...9

Percent Risk Trailing ...134
PercentProfit ..238
Place (skip word) ...238
PlayMovieChain ..102, 238
PlaySound ..100, 238
Plot ..238
Plot1 ...239
Plot2 ...239
Plot3 ...239
Plot4 ...239
PlotN ...137
PlotPaintBar ...142, 239
PlotPB ...142, 239
PM_GetCellValue152, 239
PM_GetNumColumns151, 240
PM_GetRowHeight151, 240
PM_High ...150, 240
PM_Low ...150, 240
PM_SetCellValue149, 240
PM_SetHigh ...148, 240
PM_SetLow ..148, 240
PM_SetNumColumns148, 240
PM_SetRowHeight149, 240
Pob ..241
Point ...241
POINTER ...241
Pointer Data Types, see DLL Functions
Points ...241
PointValue ...241
Pos ..241
PositionProfit ..241
Positions (Trading Strategy)

entries, limiting ..110
opening positions, determining number of shares .109

Power ...241
Previous Values, referencing13, 46, 57
Price Data, see Data
PriceScale ...241
Print ...66, 242
Print Log, see Debug Window, using
Print Statement ...66
Printer ...242
Printer, outputting to ..66
ProbabilityMap Studies

cell value
obtaining ..152, 239
setting ...149, 240

columns, number of

obtaining ..151, 240
setting ...148, 240

lower boundary
obtaining ..150, 240
setting ...148, 240

row height
obtaining ..151, 240
specifying ...149, 240

understanding ...145
upper boundary

obtaining ..150, 240
setting ...148, 240

Product ...242
Profit ...242
Profit Target ...135
Profits, taking, see Stops
ProfitTargetStop ...242
Protective ...242
Punctuation marks, definition ..6
Pyramiding

order precedence .. 107, 111
stand-by orders ... 111

Q
Quick_Ratio ...242
Quotation Marks, definition ...7

R
Random ...242
Red ..242
Reference Parameters ..53
Relational Operators ..10
Removing a Plot ..142, 144
Repeat ...242
Reserved Words

also see Functions
definition ..6
price data, referencing ...7
quick reference ...211
skip words ..8

Resolution, see Compression under Data
Resources, EasyLanguage ...2
RevSize ...243
RightSide ..164, 243
RightStr ..243
Round ...243
Runtime Errors, see Errors

S
Saturday ..243
Screen ...243
Sell ..122, 244
Semicolon, definition ...6

Index 285
Series
arrays ..44
functions ...50
inputs, assigning series values to28
parameters ..53
variables ...24

Sess1EndTime ...244
Sess1FirstBarTime ...244
Sess1StartTime ..244
Sess2EndTime ...244
Sess2FirstBarTime ...244
Sess2StartTime ..244
Sessions ..244
SetBreakEven ...132, 244
SetDollarTrailing133, 245
SetExitOnClose ..133, 245
SetPercentTrailing134, 245
SetPlotBGColor ..245
SetPlotColor ...139, 245
SetPlotWidth ...140, 245
SetProfitTarget134, 246
SetStopContract135, 246
SetStopLoss ...135, 246
SetStopPosition135, 246
SGA_Exp_By_NetSales246
Share ...246
Shares ...246
Shares/Contracts, number to use to open a position ..120
Short Positions

closing ..119, 128
opening ...122

ShowMe Studies
adding ...137
color, setting ...137
naming ...137
removing ..142
width, setting ..137
writing ..141

Sign ..247
Simple

functions ...50
parameters ..53
variables ...25

Sine ..247
Skip ..247
Skip Words ...8
Slippage ..247
SnapFundExists ..247
Sorting Arrays ..57
Sound Files, playing ..100
Spaces ...247
Square ...247
Square Brackets, definition ..7
SquareRoot ...247

STAD Club ..2
Stand-by Orders ... 111
StartDate ..247
Statements, definition ..6
StockSplit ...247
StockSplitCount ...247
StockSplitDate ..248
StockSplitTime ..248
Stop ..248
Stop Loss ..135
Stop Orders ..109
Stops

Breakeven StopFloor ...132
Close at End of Day ...133
contract basis ...135
Percent Risk Trailing ...134
position basis ...135
Profit Target ...135
Stop Loss ...135
understanding ...132

Strategies, see Trading Strategies
Strategy Testing and Development Club2
String ...248
String Operators ...9
StringArray ...248
StringArrayRef ..248
StringRef ..248
StringSeries ...248
StringSimple ...248
StrLen ...248
StrToNum ..249
Studies

ActivityBar studies, see ActivityBar Studies
PaintBar studies, see PaintBar Studies
ProbabilityMap studies, see ProbabilityMap Studies
ShowMe studies, see ShowMe Studies

Subtraction, performing ...9
SumList ...249
Sunday ...249
SymbolName ...249
SymbolNumber ...249
SymbolRoot ...249
Syntax Errors ...179

T
T ...7, 249
Tangent ...249
Target ...249
TargetType ...249
Testing Trading Strategies, see Trading Strategy Testing

Engine
Text

adding

286 The TradeStation Technologies EasyLanguage Reference Guide
price chart ..70
alignment, setting ...80
color

obtaining ..72
setting ...78

date, obtaining ..73
deleting ...71
error codes ..69, 210
files, outputting to ..66
first object, obtaining ...73
horizontal alignment, obtaining74
location, setting ..79
next object, obtaining ...75
origin type, number representing75
price charts, drawing on ...69
price value, obtaining ...77
text string

obtaining ..76
setting ...79

time, obtaining ...76
vertical alignment, obtaining77

Text ..249
Text String Expressions ...8
Text String Parameters ...52
Text_Delete ...71, 250
Text_GetColor ..72, 250
Text_GetDate ...73, 250
Text_GetFirst ..73, 250
Text_GetHStyle ..74, 250
Text_GetNext ...75, 250
Text_GetString ..76, 251
Text_GetTime ...76, 251
Text_GetValue ..77, 251
Text_GetVStyle ..77, 251
Text_New ..70, 251
Text_SetColor ..78, 251
Text_SetLocation79, 252
Text_SetString ..79, 252
Text_SetStyle ..80, 252
Than (skip word) ...252
The (skip word) ...252
Then ..252
This ..252
Thursday ..253
Ticks ...7, 253
TickType ..253
Time ..7, 19, 253
Times, working with ..18
TimeToMinute ...275
TimeToMinutes ..19
Tips, see Advanced Tips
TL_Delete ..83, 253
TL_GetAlert ...84, 253
TL_GetBeginDate ...85, 253

TL_GetBeginTime ...86, 253
TL_GetBeginVal ..86, 253
TL_GetColor ...87, 253
TL_GetEndDate ..87, 253
TL_GetEndTime ..88, 254
TL_GetEndVal ...88, 254
TL_GetExtLeft ..89, 254
TL_GetExtRight ..89, 254
TL_GetFirst ...90, 254
TL_GetNext ...91, 254
TL_GetSize ...92, 254
TL_GetStyle ...92, 255
TL_GetValue ...93, 255
TL_New ...83, 255
TL_SetAlert ...94, 255
TL_SetBegin ...95, 255
TL_SetColor ...95, 256
TL_SetEnd ..96, 256
TL_SetExtLeft ..97, 256
TL_SetExtRight ..97, 256
TL_SetSize ...98, 256
TL_SetStyle ...99, 257
To ...257
Today ...257
Tomorrow ..257
Tool_Black ...257
Tool_Blue ..257
Tool_Cyan ..257
Tool_DarkBlue ..257
Tool_DarkBrown ..257
Tool_DarkCyan ..257
Tool_DarkGray ..257
Tool_DarkGreen ..257
Tool_DarkMagenta ...258
Tool_DarkRed ...258
Tool_DarkYellow ...258
Tool_Dashed ...258
Tool_Dashed2 ...258
Tool_Dashed3 ...258
Tool_Dotted ...258
Tool_Green ...258
Tool_LightGray ..258
Tool_Magenta ...258
Tool_Red ..258
Tool_Solid ...258
Tool_White ...258
Tool_Yellow ...258
Total ...258
TotalBarsLosTrades ..259
TotalBarsWinTrades ..259
TotalTrades ...259
Trading Strategies

also see Orders
bouncing ticks ..116

Index 287
stops, see Stops
Strategy Testing Engine, see Trading Strategy Testing

Engine
Trading Strategy Testing Engine

automation
canceling orders ...112
contracts/shares, specifying number109
open entries, limiting per position110
orders, determining which to fill107
price for placing and filling orders106
stand-by orders ...111

backtesting
bar assumptions ..115
bouncing ticks ..116

overview ...105
Trading Verbs

Buy ...119
or higher ...105, 109, 111
or lower ..105, 109, 111
orders ...104
Sell ...122
understanding ...104

TrailingStopAmt ...259
TrailingStopFloor ...259
TrailingStopPct ...259
Trendlines

adding to price charts ...81, 83
alert status

obtaining ..84
setting ...94

color
obtaining ..87
setting ...95

deleting ...83
ending point

obtaining date ...87
obtaining price value ..88
obtaining time ..88
setting ...96

error codes ..82, 210
extending

left ..97
obtaining status ..89
right ..97

first object, obtaining ...90
next object, obtaining ...91
starting point

obtaining date ...85
obtaining price value ..86
obtaining time ..86
setting ...95

style of line
obtaining ..92

setting ...99
thickness of line

obtaining ..92
setting ...98

value of line at specific bar, obtaining93
Troubleshooting

EasyLanguage Support Center2
syntax error list ..179

True ..259
True/False Expressions ..8
True/False Parameters ..52
TrueFalse ..259
TrueFalseArray ..259
TrueFalseArrayRef ...259
TrueFalseRef ...259
TrueFalseSeries ...259
TrueFalseSimple ...260
TtlDbt_By_NetAssts ..260
Tuesday ...260
TXT Files, outputting information to66

U
Under ...260
UnionSess1EndTime ...260
UnionSess1FirstBar ..260
UnionSess1StartTime260
UnionSess2EndTime ...260
UnionSess2FirstBar ..260
UnionSess2StartTime260
Units ...260
UNSIGNED ..260
Until ...260
Update Every Tick Calculation52, 142, 144
UpperStr ..260
UpTicks ...7, 260
User Defined, MaxBarsBack15
User Functions, see Functions
USER32.DLL, see DLL Functions

V
V ...7, 261
Var ..22, 261
Variable ..22, 261
Variables

arrays, see Arrays
assigning ..23
benefit of ..20
counters, variables used as32, 33
declaring ..22
generate orders for next bar calculations52
loops and control variables33
parameters, using variables as53
series variables ...24

288 The TradeStation Technologies EasyLanguage Reference Guide
simple variables ...25
update every tick calculations52
values, referencing ...23
Variable Assignment Statement23
Variable Declaration Statement22
working with ..20

Vars ..261
VARSIZE ...261
VARSTARTADDR ...261
Video Files, playing ...100
VOID ..261
Volume ...7, 261

W
Was (skip word) ...261
WAV Files, playing ..100
Wednesday ..261
While ...261
While Loop

infinite loops ..32
understanding ...31

White ...262
Widths

EasyLanguage numeric values209
plots, setting ...137, 140, 142

WORD ..262

Y
Year ..262
Yellow ...262
Yesterday ..262

Z
Zero, division by ..10

	CHAPTER 1
	Introduction
	What is EasyLanguage?
	What Can You Create?
	EasyLanguage Resources and Support

	CHAPTER 2
	The Basic EasyLanguage Elements
	How EasyLanguage is Evaluated
	EasyLanguage and Price Charts

	About the Language
	Statements
	Reserved Words
	Operators
	Punctuation Marks

	Referencing Price Data
	Skip Words

	Expressions and Operators
	Operators
	String Operator
	Mathematical Operators
	Advanced Tip: “Division by Zero”
	Relational Operators
	Logical Operators
	Advanced Tip: “Writing Conditional Expressions”

	Referencing Previous Values
	Maximum Number of Bars a Study will Reference, or MaxBarsBack

	Manipulating Dates and Times
	Working with Dates
	Date
	ELDate(YYYY, MM, DD)
	DateToJulian(eDate)
	JulianToDate(jDate)
	CurrentDate
	Working with Times
	Time
	TimeToMinutes(eTime)
	MinutesToTime(mTime)
	CurrentTime

	Using Variables
	Declaring Variables
	Assigning Values to Variables
	Referencing the Value of a Variable
	Advanced Tip: “Working with Series Variables”

	Using Inputs
	Input Types
	Declaring Inputs
	Referencing the Value of an Input
	Advanced Tip: “Assigning Series Values to Inputs”

	EasyLanguage Control Structures
	IF-THEN Statement
	Block IF-THEN Statement
	IF-THEN-ELSE Statement
	Combining Block IF-THEN and IF-THEN-ELSE Statements
	Nesting an IF-THEN Statement
	While Loop
	Infinite Loops
	For Loop

	Writing Alerts
	Alert
	Cancel
	CheckAlert
	AlertEnabled
	Using Alert Compiler Directives
	#BeginAlert
	#BeginCmtryOrAlert

	Understanding Arrays
	Declaring Arrays
	Assigning Values to Elements in an Array
	Referencing Values of Array Elements
	Advanced Tip: “Working with Series Arrays”

	Understanding User Functions
	Using Existing Functions
	Referencing Previous Values of Functions
	Using Previous Values as Parameters
	Using Data Aliases
	Writing User Functions
	Understanding Function Types: Simple & Series
	Simple Functions
	Series Functions
	Advanced Tip: Speeding Up Calculation Time
	Understanding Parameters and Parameter Types
	Simple Parameters
	Series Parameters
	Reference Parameters
	Defining Parameters
	Working with Arrays

	Output Methods
	Working with Commentary
	Using Commentary Compiler Directives
	#BeginCmtry
	#BeginCmtryOrAlert
	Sending Information to the Print Log, File, or Printer
	FileAppend

	Drawing Text on Price Charts
	Text Object Reserved Words

	Drawing Trendlines on Price Charts
	Trendline Reserved Words
	Tool_Solid
	1
	Tool_Dashed
	2
	Tool_Dotted
	3
	Tool_Dashed2
	4
	Tool_Dashed3
	5
	Tool_Solid
	1
	Tool_Dashed
	2
	Tool_Dotted
	3
	Tool_Dashed2
	4
	Tool_Dashed3
	5

	Multimedia and EasyLanguage
	Playing Sound Files
	Playing Video Files

	CHAPTER 3
	EasyLanguage for TradeStation 6
	Writing Strategies
	The Trading Strategy Testing Engine
	Overview
	Automation
	Price at Which Orders are Placed and Filled
	Determining Which Order to Fill
	Determining the Number of Shares when Opening Positions
	Limiting the Number of Open Entries per Position
	Stand-by Orders
	Canceling Orders
	Backtesting
	Strategy Testing Data Resolution
	Bar Assumptions
	Bouncing Ticks

	Order Placement
	Buy
	Order Name
	Number of Shares/Contracts
	Execution Method
	Examples
	SellShort
	Order Name
	Number of Shares/Contracts
	Execution Method
	Examples
	Sell
	Order Name
	Tying an Exit to an Entry
	Number of Shares/Contracts
	Execution Method
	Examples
	BuyToCover
	Order Name
	Tying an Exit to an Entry
	Number of Shares/Contracts
	Execution Method
	Examples

	Understanding Built-in Stops
	SetBreakEven
	SetExitOnClose
	SetDollarTrailing
	SetPercentTrailing
	SetProfitTarget
	SetStopLoss
	SetStopContract
	SetStopPosition

	Writing Indicators and Studies
	Writing Indicators
	PlotN(Expression, “<PlotName>”, ForeColor, Default, Width)
	SetPlotColor(Number, Color)
	SetPlotWidth(Number, Width)

	Writing ShowMe and PaintBar Studies
	ShowMe Studies
	NoPlot(Num)
	PaintBar Studies
	PlotPaintBar(BarHigh, BarLow , "PlotName", ForeColor, Default, Width)
	NoPlot(Num)

	Writing ProbabilityMap Studies
	Set Reserved Words
	PM_SetHigh(Num)
	PM_SetLow(Num)
	PM_SetNumColumns(Num)
	PM_SetRowHeight(Num)
	PM_SetCellValue(Column, Price, Value)
	Get Reserved Words
	PM_Low
	PM_High
	PM_GetRowHeight
	PM_GetNumColumns
	PM_GetCellValue(Column, Price)
	ProbabilityMap Related Functions
	ProbAbove(PriceTarget, CurrentPrice, VltyVal, BarsToGo)
	ProbBelow(PriceTarget, CurrentPrice, VltyVal, BarsToGo)
	ProbBetween(LowTarget, HighTarget, CurrentPrice, VltyVal, BarsToGo)

	Writing ActivityBar Studies
	Set Reserved Words
	AB_AddCell(Price, Side, Str_Char, Color, Value)
	AB_SetRowHeight(Value)
	AB_SetZone(HighVal, LowVal, Side)
	AB_SetActiveCell(Price, Side)
	AB_RemoveCell(Price, Offset, Side)
	Get Reserved Words
	AB_GetCellChar(Price, Side, Offset)
	AB_GetCellColor(Price, Side, Offset)
	AB_GetCellDate(Price, Side, Offset)
	AB_GetCellTime(Price, Side, Offset)
	AB_GetCellValue(Price, Side, Offset)
	AB_GetNumCells(Price, Side)
	AB_GetZoneHigh(Side)
	AB_GetZoneLow(Side)
	AB_High
	AB_Low
	Other Reserved Words Related to ActivityBar Studies
	ActivityData
	BarStatus(DataNum)
	LeftSide
	RightSide
	ActivityBar Related Functions
	AB_AddCellRange(HighValue, LowValue, Side, String, Color, AB_Value)
	AB_NextColor(MinuteInterval)
	AB_NextLabel(MinuteInterval)
	AB_Mode(Side, Type, oModeCount, oModePriceValue)
	AB_RowHeightCalc(ApproxNumRows, RangeAvgLength)
	AB_StdDev(Multiplier, Side)

	CHAPTER 4
	EasyLanguage and Custom DLLs
	Defining a DLL Function
	Data Types
	Using Pointer Data Types

	Using Functions from DLLs
	Keeping Track of Analysis Techniques
	Dll_Add
	Dll_Context
	Dll_Free

	More About the EasyLanguage DLL Extension Kit

	APPENDIX A
	APPENDIX B
	Colors
	Widths
	Trendline and Text Object Error Codes

	APPENDIX C
	APPENDIX D
	Functionality
	Components
	FindAddress Functions
	FindAddress_Array
	FindAddress_Close
	FindAddress_Date
	FindAddress_DownTicks
	FindAddress_High
	FindAddress_Low
	FindAddress_Open
	FindAddress_OpenInt
	FindAddress_Time
	FindAddress_Upticks
	FindAddress_Var
	FindAddress_Volume
	Conversion Functions
	DateToJulian
	JulianToDate
	MinuteToTime
	TimeToMinute

