Indices Surds \& Fractions

Use the laws of indices for all rational exponents, including negative and zero indices.

Use and manipulate surds, including rationalising the denominator.
\square Understand and use the equivalence of surd and index notation.
\square Find solutions of quadratic equations using the formula \& simplify the roots.

Factorising

Manipulate polynomials eg expanding brackets, collecting like terms and factorising.
\square Find solutions of quadratic equations by factorisation.

Completing the Square

\square Work with quadratic functions and their graphs
\square Find solutions of quadratic equations by completing the square
\square Use the completed square to find the line of symmetry \& turning point of a quadratic

Simultaneous Equations

\square Solve simultaneous equations by elimination and by substitution
\square Solve simultaneous equations involving quadratics with powers of 2, brackets or fractions
\square Interpret solutions of simultaneous equations as coordinates of the intersection of graphs

Hidden Quadratics

\square Solve quadratic equations in a function of the unknown

The Discriminant of a Quadratic

\square Use the discriminant of a quadratic, including the conditions for real and repeated roots
\square Relate the value of the discriminant to the graph of the quadratic function

The Factor Theorem \& Algebraic Division

\square Use the factor theorem and algebraic division by $(a x \pm b)$ to manipulate polynomials

The Binomial Expansion

\square Understand and use the binomial expansion of $(a+b x)^{n}$ for positive integer n
\square Be able to use the notations $n!,{ }^{n} C_{r}$ and $\binom{n}{r}$
\square Use the binomial expansion to approximate values
\square Know that $0!=1$
\square Know the relationship between binomial coefficients and Pascal's triangle
\square Understand and know the link to binomial probabilities

Sketching Factorised Polynomials

\square Sketch curves defined by simple equations, including polynomials

Graph Transformations

Sketch the graph resulting from a simple stretch, reflection or translation
Transformations of Functions

\square Understand the effect of stretches and translations on the graph of $y=f(x)$

Sketching Transformations of x^{3} and x^{4}Apply transformations to cubics or quartics, and sketch the resulting graph

Sketching Transformations of $\frac{1}{x}$ and $\frac{1}{x^{2}}$

\square Understand and use proportional relationships and their graphsSketch the graphs of $\frac{a}{x}$ and $\frac{a}{x^{2}}$, including their vertical and horizontal asymptotes

Solving and Sketching Inequalities

\square Represent linear inequalities, eg $y>x+1$, graphically
\square Represent quadratic inequalities, eg $y>a x^{2}+b x+c$ graphically
\square Express solutions of inequalities using set notation
\square Solve inequalities (with brackets and fractions) algebraically then represent graphically

Line Equation

\square Use the equation of a straight line in the form $y-y_{1}=m\left(x-x_{1}\right)$ or $a x+b y+c=0$
\square Draw a straight line graph given its equation

Line Geometry

\square Understand the gradient conditions for straight lines to be parallel or perpendicular
\square Use straight line models in a variety of contexts.

Circle Geometry

\square Use the equation of a circle in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$ to find centre, radiusComplete the square to find the centre and radius of a circle
\square Know that the angle in a semicircle is a right angle
\square Know that the perpendicular from the centre of a circle to a chord bisects the chord
\square Know that the radius of a circle is perpendicular to the tangent to the circle at that point

Formulae for Triangles

\square Use the sine and cosine rule to find an angle and/or a side of a triangle
\square Use the formula $\frac{1}{2} a b \sin c$ to find the area of a triangle

Vectors

\square Use vectors in two dimensions, in the form of column vectors and \mathbf{i} and \mathbf{j} unit vectors
\square Calculate the magnitude and direction of vectors

Convert between component and magnitude/direction form
\square Add vectors diagrammatically and by vector addition
\square Multiply vectors by scalars then understand their geometrical interpretationsUnderstand and use position vectors to calculate the distance between two points
\square Use vectors to solve problems in pure mathematics and mechanics (eg forces)

Modelling with Exponential Functions

\square Know and use the function a^{x} and its graph, where a is positive
\square Know and use the function e^{x} and its graph
\square Know that the gradient of $e^{k x}=k e^{k x}$ and why this makes exponential models suitable
\square Use exponential growth and decay in modelling, considering limitations and refinements

Logarithmic Functions

\square Know and use the definition of $\log _{a} x$ as the inverse of a^{x}, where a is positive and $x \geqslant 0$
\square Know and use the function $\ln x$ as the inverse of e^{x}, and know and use its graph

Exponential \& Logarithmic Equations

\square Solve equations of the form $a^{x}=b$
\square Solve equations of the form $e^{a x+b}=p$ and $\ln (a x+b)=q$

Linearising Bivariate Data

\square Use graphs to estimate parameters in relationships of the form $y=a x^{n}$ and $y=k b^{x}$ Log Rules
\square Understand and use $\log _{a} x+\log _{a} y=\log _{a}(x y)$
\square Understand and use $\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)$
\square Understand and use $k \log _{a} x=\log _{a} x^{k}$

Understanding $\sin x, \cos x, \tan x$

\square Understand and use the definitions of sine, cosine and tangent
\square Understand and use the functions, graphs, symmetries, periodicity of \sin , \cos and \tan
\square Understand and use $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta=1$

Solving Mini-Trig Equations

\square Solve simple trigonometric equations in a given interval
\square Solve quadratic equations in \sin , \cos and \tanSolve equations involving multiples of the unknown angle

Introduction to Differentiation
\square Differentiate x^{n} for rational values of n, and related constant multiples, sums, differences
\square Use differentiation from first principles for small positive integer powers of x
\square Sketch the gradient function of a curve

Tangents and Normals

\square Understand the derivative of $f(x)\left(\frac{d y}{d x}\right)$ is the gradient of the tangent to $y=f(x)$ at (x, y)
\square Understand the second derivative $\left(\frac{d^{2} y}{d x^{2}}\right)$ is the rate of change of the gradient
\square Use the second derivative to determine if a stationary point is a maximum or a minimum
\square Apply differentiation to find gradients, tangents and normals

Stationary Points

\square Understand that stationary points are maxima and minima
\square Use stationary points when sketching graphs

Use the derivative to identify where functions are increasing and decreasing

Introduction to Integration

\square Know and use the Fundamental Theorem of Calculus
\square Integrate $x^{n}(x \neq-1)$ and related sums, differences and constant multiples
\square Use $f^{\prime}(x)$ and a point on the curve to find the equation of a curve in the form $y=f(x)$

Area Under Curves

\square Evaluate definite integrals to find the area under a curve
\square Understand the implication of a negative answer

Proof

\square Understand and use the structure of mathematical proof
\square Be familiar with the logical connectives \equiv, \Rightarrow and \Leftrightarrow
\square Understand and use the terms integer, real, rational and irrational
\square Use proof by deduction, e.g. differentiation from first principles
\square Use proof by exhaustion; try all of the available options to prove/disprove statements
\square Use disproof by counter example; find a value that doesn't work for the statement

Sampling Techniques

\square Understand and use the terms population and sampleUse samples to make informed inferences about the populationUnderstand simple random sampling, stratified sampling and systemic sampling

\squareUnderstand quota sampling and opportunity (or convenience) sampling
\square Understand, select and critique sampling techniques in context

Comparing Data Sets

\square Interpret the mean, median, mode, variance, standard deviation, range and IQR
\square Use linear interpolation to calculate percentiles from grouped data
\square Interpret frequency polygons, box and whisker plots and cumulative frequency diagrams

Histograms

\square Interpret histograms, and understand the area under a histogram represents frequency

Quartiles \& Interpolation

\square Recognise and interpret possible outliers in data sets and statistical diagrams
\square Use $Q_{1}-1.5 \times \mathrm{IQR}$ and $Q_{3}+1.5 \times \mathrm{IQR}$ or mean $\pm 3 \times$ standard deviation
\square Clean data by dealing with missing data, errors and outliers

Standard Deviation

\square Calculate standard deviation, including from summary statistics

Correlation \& Regression

\square Understand the terms explanatory (independent) and response (dependent) variables
\square Interpret scatter diagrams and regression lines for bivariate data
\square Interpret scatter diagrams that include distinct sections of the populationUse the terms positive, negative, zero, strong and weak to informally interpret correlation
\square Understand that correlation does not imply causation

Venn Diagrams \& Set Notation

\square
Use Venn diagrams and tree diagrams to represent probabilities
\square Understand and calculate probabilities of mutually exclusive and independent events
\square Link probabilities to discrete and continuous distributions

Binomial Probabilities

\square Know and identify discrete uniform distributions
\square Use the binomial distribution as a model to calculate probabilities
\square Be familiar with the notation $X \sim \mathrm{~B}(n, p)$

Use a calculator to find individual or cumulative binomial probabilities
\square Apply the binomial distribution to real-world situations and comment on its suitability

Hypothesis Test for Significance (Binomial)
\square Use the terms null hypothesis, alternative hypothesis, significance level and test statistic.
\square Use the terms 1 -tail test, 2-tail test, critical value, critical and acceptance region, p-valueConduct a statistical hypothesis test for the proportion in the binomial distribution
\square Interpret the results of a hypothesis test in context, while implying uncertainty
\square Understand that a sample is used to make an inference about a population
\square Appreciate that the significance level is the probability of incorrectly rejecting H_{0}

st, vt \& at Graphs

\square Understand and use position, displacement, distance, velocity, speed, accelerationUnderstand, use and interpret displacement-time graphs and velocity-time graphsUnderstand that the area under a velocity-time graph is equal to the distance travelled
\square Understand that the gradient of a velocity-time graph is equal to the acceleration

Constant Acceleration Problems

\square Understand, use and derive formulae for constant acceleration for straight line motion

ID Variable Acceleration
\square Use calculus in kinematics for motion in a straight line

$$
v=\frac{\mathrm{d} r}{\mathrm{~d} t^{\prime}} \quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}, \quad r=\int v \mathrm{~d} t, \quad v=\int a \mathrm{~d} t
$$

Forces \& Newton's Laws

\square Understand the concept of a force
\square Understand and use Newton's first law
\square Understand and use Newton's second law for straight line motion, constant accelerationUnderstand and use Newton's third law for straight line motion
\square Understand and use Newton's third law for equilibrium of forces on a particle
\square Apply Newton's third law to smooth pulleys and connected particles
\square Understand and use weight and motion in a straight line under gravity (g)
\square Understand and use the concept of a normal reaction force (R)
\square Know that, when contact between an object and a surface is lost, $R=0$Understand the concept of a frictional force and apply it when the force is given

Vectors - Force Problems

\square Understand and use Newton's second law for forces given as 2D vectors
\square Understand and use Newton's third law for simple cases of equilibrium with vectors

