
Center of Mass (COM)

- Finding COM of symmetric objects is quite simple
- ...because it is easy to find the center

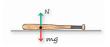
Motion of Symmetric Objects

- Even the motion of symmetric objects is quite predictable
- ...They would follow a parabolic path

Motion of Asymmetric Objects

 But if you observe their COM, you will find it follows a parabolic trajectory

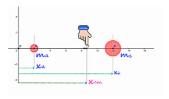
Gravity acts on every particle of the bat.



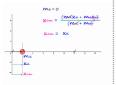
However it can assumed that the force of gravity for the entire bat acts through the centre of mass

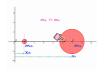
Motion of Asymmetric Objects

- Gravity acts on every particle of the bat
- However, you can assume that the force of gravity for the entire mass acts through the COM



www.thesciencecube.com

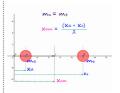

COM of a System of 2 Particles



$$\mathbf{X}cm = \frac{(\mathbf{M}a\mathbf{X}a + \mathbf{M}b\mathbf{X}b)}{(\mathbf{M}a + \mathbf{M}b)}$$

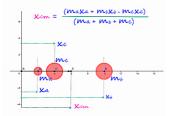
 COM will be closer to the heavier object

COM of a System of 2 Particles: Various Situations



 COM merges with COM of mass a • When b >> a

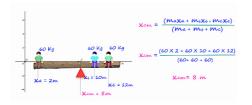
 COM become much closer to b



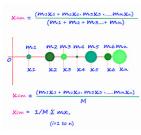
CURP

- When b = a
- COM is in the middle of a and b

COM of a System of 3 Particles

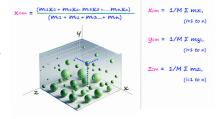


 You just add mcxc in the numerator and mc in the denominator



COM of 3 Men sitting on a Log

• COM falls closer where the concentration of mass is higher, that is b and c

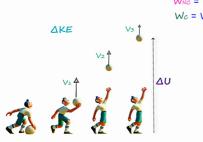

COM of "n" Particles on X axis

- COM of n particles can be found by adding products of mass and distance in the numerator and mass in the denominator
- This formula is useful only when the masses are along the * axis

COM of "n" Particles in 3D Space

 COM of n particles in 3 dimension can be found by establishing the Y and Z cordinates in <u>addition to the</u> <u>X coordinate</u>

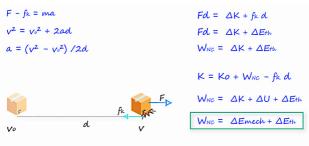
WORK DONE BY AN EXTERNAL FORCE



Fapplied does work W on the ball
Fapplied is a <u>non conservative</u>

external force

... that transfers energy


W_{NC} = Work done by applied force F W_c = Work done by force of gravity

WNET = WNC + WC	(1)
$W_{NET} = \Delta K$	(2)
$W_c = -\Delta U$	(3)

 $\Delta K = W_{NC} - \Delta U$

 $W_{NC} = \Delta K + \Delta U$ $W_{NC} = \Delta Emech$



 $Fd = 1/2(mv^2) - 1/2(mv^2) + fk d$

LAW OF CONSERVATION OF ENERGY The change in total energy E of a system = Magnitudes of energy transfer to or from the system

Work done by external force F

