Question		Answer		Marks	AO	Guidance	
4	(a)	$(2-5 x)^{5}=2^{5}+$ $\begin{aligned} & 32-400 x \\ & +2000 x^{2} \end{aligned}$	$+{ }^{5} \mathrm{C}_{2} 2^{3}(-5 x)^{2}+\ldots$	M1 A1 A1 [3]	$\begin{aligned} & 1.1 \mathrm{a} \\ & \\ & 1.1 \\ & 1.1 \end{aligned}$	Attempt at least 2 terms - products of binomial coefficients and correct powers of 2 and $-5 x$	Allow $\pm 5 x$ - allow expansion of $\left(1 \pm \frac{5}{2} x\right)^{5}$ Do not allow from $+5 x$
4	(b)	$\begin{aligned} & \left(1+2 a x+a^{2} x^{2}\right) \\ & 64 a-400=48= \\ & a=7 \end{aligned}$	$\left.c+2000 x^{2}+\ldots\right)$	$\begin{gathered} \text { M1* } \\ \text { Dep*M1 } \end{gathered}$ A1 [3]	2.1 1.1 2.2a	Expand first bracket, multiply by part (a) to obtain the two relevant terms in x Equate sum of the two relevant terms to 48 and attempt to solve for a Obtain $a=7$ only	Ignore terms in x^{2} M1 only for $2 a-400=$ 48 (oe e.g. with consistent x)
5	(a)	$k=3$		$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1		
5	(b)	$\begin{aligned} & (1-4)^{2}+(2-k)^{2} \\ & k=0 \\ & k=4 \end{aligned}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{gathered} 1.1 \mathrm{a} \\ 1.1 \\ 1.1 \end{gathered}$	oe e.g. allow consistent use of square roots - must be using subtraction in brackets	May be implied by one correct value for k
5	(c)	$\frac{4-2}{7-1}=\frac{k-5}{4-3}$ oe $k=\frac{16}{3}$	or $\quad \frac{5-2}{3-1}=\frac{4-k}{7-4}$ oe $k=-\frac{1}{2}$	M1 A1 [2]	3.1a 1.1	or $\frac{5-4}{3-7}=\frac{k-2}{4-1}$ oe - must be consistent application of gradients (allow one sign error) $k=\frac{5}{4}$	Any one of these three solutions

