Question		Answer	Marks	AO	Guidance	
4	(a)	$(2-5x)^5 = 2^5 + {}^5C_1 2^4 (-5x) + {}^5C_2 2^3 (-5x)^2 + \dots$	M1	1.1a	Attempt at least 2 terms – products of binomial coefficients and correct powers of 2 and $-5x$	Allow $\pm 5x - \text{allow}$ expansion of $\left(1 \pm \frac{5}{2}x\right)^5$
		32 - 400x	A1	1.1		
		$+2000x^{2}$	A1	1.1		Do not allow from $+5x$
			[3]			
4	(b)	$(1+2ax+a^2x^2)(32-400x+2000x^2+)$	M1*	2.1	Expand first bracket, multiply by part (a) to obtain the two relevant terms in <i>x</i>	Ignore terms in x^2
		$64a - 400 = 48 \Longrightarrow a = \dots$	Dep*M1	1.1	Equate sum of the two relevant terms to	M1 only for 2 <i>a</i> – 400 =
					48 and attempt to solve for <i>a</i>	48 (oe e.g. with consistent <i>x</i>)
		<i>a</i> = 7	A1	2.2a	Obtain $a = 7$ only	
			[3]			
5	(a)	<i>k</i> = 3	B1 [1]	1.1		
5	(b)	$(1-4)^2 + (2-k)^2 = 13$	M1	1.1a	oe e.g. allow consistent use of square roots – must be using subtraction in brackets	May be implied by one correct value for k
		k = 0	A1	1.1		
		k = 4	A1	1.1		
5	(c)	$\frac{4-2}{7-1} = \frac{k-5}{4-3} \text{ oe} \qquad \text{or} \frac{5-2}{3-1} = \frac{4-k}{7-4} \text{ oe} \\ k = \frac{16}{3} \qquad \qquad k = -\frac{1}{2}$	[3] M1	3.1a	or $\frac{5-4}{3-7} = \frac{k-2}{4-1}$ oe – must be consistent application of gradients (allow one sign error)	Any one of these three solutions
		$k = \frac{16}{3} \qquad \qquad k = -\frac{1}{2}$	A1	1.1	$k = \frac{5}{4}$	
			[2]			

6 (a) DR