2: Linear Inequalities

Simple Inequalities:

1. Mathematical sentences containing symbols $<, >, \le$ or \ge are called **inequalities**. The solution of inequalities usually involves a range of values of the variable concerned.

2. Properties of inequalities are shown in the table below.

Operation	Property	Illustrations
Multiplied by a positive number.	If $x > y$, then $ax > ay$	 If 5 > 3, then 5 x 2 > 3 x 2 If -3 > -5, then -3 x 2 > -5 x 2
Divided by a positive number.	If $x > y$, then $\frac{x}{a} > \frac{y}{a}$	- If 5 > 3, then $\frac{5}{2} > \frac{3}{2}$ - If -3 > -5, then $\frac{-3}{2} > \frac{-5}{2}$
Multiplied by a negative number. (Change sign)	If $x > y$, then $-ax < -ay$	 If 5 > 3, then 5 x (-2) < 3 x (-2) If -3 > -5, then -3 x (-2) < -5 x (-2)
Divided by a negative number. (Change sign)	If $x > y$, then $\frac{x}{-a} < \frac{y}{-a}$	- If 5 > 3, then $\frac{5}{-2} < \frac{3}{-2}$ - If -3 > -5, then $\frac{-3}{-2} < \frac{-5}{-2}$

3. To solve an inequality, we can

• multiply or divide both sides of an inequality by a **positive** number without changing the inequality sign.

• multiply or divide both sides of an inequality by a **negative** number, **changing** the inequality sign.

• add or subtract both sides of an inequality by a **positive/negative** number without changing the inequality sign.

Solving Inequalities Using Cross Multiplication:

4. When encountering a fractional inequality, do note that it can be confusing when flipping signs. We'll walk you through an example:

When $\frac{a}{b} > \frac{c}{d}$, do note ad > bc, and **not** bc > ad (vice versa). Always know that the numerator will stay on their side (e.g. *a* will always be on the LHS, even after cross multiplication, *ad*, is on the LHS)

5. However, do note that bd > 0 (i.e. **both** *b* and *d* **must** be **positive** or **negative**.) for said inequality to hold. When one of them is negative while the other one is positive, the inequality **will not** hold. In this case, we can always move the negative to the numerator.

For example:	
[Wrong]	[Correct]
$\frac{5}{-1} > \frac{x}{2} \leftarrow \text{(both denominators aren't positive/negative)} \rightarrow$	$\frac{5}{-1} > \frac{x}{2}$
10 > -x (cross-multiply)	$\frac{-5}{1} > \frac{x}{2}$ (move '-' to numerator)
-x < 10 (switch so x is at LHS)	-10 > x (cross-multiply)
x > -10 (divide both sides by -1, sign flips)	x < -10 (switch so x is at LHS)

Solutions of Inequalities:

6. A solution of an inequality is **any** value of *x* which **satisfies** an inequality (e.g. $x \le 5$) Some integer solutions of the inequality $x \le 5$ are x = 5, 4, 3, 2, 1, ... To represent all solutions of an inequality, we need to provide a **number line** alongside our solved inequality.

7. To draw a number line, we draw a scale of numbers with the number in the inequality being in the middle/right. Do note the number at the very **left** side of the scale is **numerically smaller** than the number on the very **right** of the scale. After that:

- If the inequality contains < or >: we draw a (hollow circle) on top of the number in the inequality and draw an arrow to the left or right depending on the inequality sign.
- If the inequality contains ≤ or ≥: we draw a (shaded circle) on top of the number in the inequality and draw an arrow to the left or right depending on the inequality sign.

For example:

Copyright Issues:

Content shared for educational purposes only. These notes are based on materials originally published by © SHING LEE PUBLISHERS PTE LTD (credit given). The content has been modified and expanded by Om Mahto, who retains ownership of these modifications.

Version 4