Node Program

Express.|s

Node.js version: 5.1
Last updated: Jan 2016

© Node Program, 2016

Express

Express is the most popular web application framework for Node. It
Is easy to work with as it ties into Node's functional paradigm.

e Deliver static content (or consider using nginx)
e Modularize business logic
e Construct an API

e Connect to various data sources

© Node Program, 2016 2

DEMO

Core http module API: http:/bit.ly/1StXFsG
— O

© Node Program, 2016

http://bit.ly/1StXFsG

With Express you can develop APIs
faster!

Express vs. http

e URL params and query strings parsing
e Automatic response headers
 Routes and better code organization

e Mpyriads of plugins (called middleware)
e Request body parsing (with a module)

e Authentication, validation, session and more! (with modules)

© Node Program, 2016

Installing Dependency

$ npm install express --save

$ npm install express@4.13.3 --save

© Node Program, 2016

Installing Scaffolding

Install Express.js command-line generator:

$ npm install -g express-generator

© Node Program, 2016

Using the Generator

express todo-list-app
cd todo-list-app

npm install

node app

A A A A

© Node Program, 2016

Structure

e app.js: main file, houses the embedded server and application
logic

e /public: contains static files to be served by the embedded
server

e /routes: houses custom routing for the embedded server

e /views: contains templates that can be processed by a template
engine

© Node Program, 2016 9

1. Imports and instantiations
2. Configurations
3. Middleware

4. Routes

5. Bootup

© Node Program, 2016

app.Js

10

Configuring Express

The Express server needs to be configured before it can start

Manage configuration via the set method:

var express = require('express')

var app = express()

app.set('port', process.env.PORT || 3000)

app.set('views', 'templates') // The directory the templates are stored in
app.set('view engine', 'jade')

© Node Program, 2016 11

© Node Program, 2016

Node.js Middleware Pattern

12

What is Middleware

Middleware pattern is a series of processing units connected
together, where the output of one unit is the input for the next
one. In Node.Js, this often means a series of functions in the form:

(args, next) {
// ... Run some code
next(output) // Error or real output

J

© Node Program, 2016

13

Continuity

Request is coming from a client and response is sent back to the
client.

request->middlewarel->middleware’Z2->...middlewareN->route->response

© Node Program, 2016 14

Organizing Code

database in app. js, but we need it in routes/users.js
where our /users routes are located

How to pass the database reference? Something like this?
var users = require('./routes/users.js')(database)

There is a better way!

© Node Program, 2016

15

Connect Framework

Express leverages the Connect framework to provide the
middleware functionality. Middleware are used to manage how a

request should be handled.

© Node Program, 2016

16

Applying Connect/Express Middleware

Example:

express = ('express')
app = express()
//... Define middlewarel-N
app.use(middlewarel)
app.use(middleware?)

app.use(middlewareN)

© Node Program, 2016

17

Middleware Order

Middleware are executed in the order specified:

Logger = ('morgan’')
bodyParser = ('body-parser')

app.use(logger('dev'))
app.use(bodyParser.json())

© Node Program, 2016

18

Two Categories of Express Middleware

1. npm modules, e.g., body-parser

2. Custom middleware

© Node Program, 2016

19

Creating Middleware

Custom middleware is easy to create with a reference:

middleware = (request, response, next) {
// Modify request or response
// Execute the callback when done

next()
b

app.use(middleware)

© Node Program, 2016

20

Creating Middleware

Or with anonymous function definition:

app.use(function (request, response, next) {
// Modify request or response
// Execute the callback when done
next()

1)

© Node Program, 2016

21

Passing References

request is always the same object in the lifecycle of a single client
request to the Experss server

This solves the database reference problem:

app.use((request, response, next) {
request.database = database
next()

1)

© Node Program, 2016 22

Most Popular and Useful Connect/Express Middleware

$ npm install <package name> --save
e body-parser request payload

e compression gzip

e connect-timeout set request timeout

e cookie-parser Cookies

e cookie-session Session via Cookies store

© Node Program, 2016

23

https://github.com/expressjs/body-parser
https://github.com/expressjs/compression
https://github.com/expressjs/timeout
https://github.com/expressjs/cookie-parser
https://github.com/expressjs/cookie-session

Connect/Express Middleware

e csurf CSRF

e errorhandler error handler

* express-session session via in-memory or other store
e method-override HTTP method override

e morgan server logs

e response-time

© Node Program, 2016

24

https://github.com/expressjs/csurf
https://github.com/expressjs/errorhandler
https://github.com/expressjs/session
https://github.com/expressjs/method-override
https://github.com/expressjs/morgan
https://github.com/expressjs/response-time

Connect/Express Middleware

e serve-favicon favicon
e serve-index
e serve-static static content

e vhost

© Node Program, 2016

25

https://github.com/expressjs/serve-favicon
https://github.com/expressjs/serve-index
https://github.com/expressjs/serve-static
https://github.com/expressjs/vhost

Other Popular Middleware

e cookies and keygrip: analogous to cookieParser
e raw-body

e connect-multiparty, connect-busboy

e s: analogous to query

e st, connect-static analogous to staticCache

© Node Program, 2016

26

https://github.com/jed/cookies
https://github.com/jed/keygrip
https://github.com/stream-utils/raw-body
https://github.com/superjoe30/connect-multiparty
https://github.com/mscdex/connect-busboy
https://github.com/visionmedia/node-querystring
https://github.com/isaacs/st
https://github.com/andrewrk/connect-static

Other Popular Middleware

e express-validator: validation

o |ess: LESS CSS

e passport: authentication library
e helmet: security headers

e connect-cors: CORS

e connect-redis

© Node Program, 2016

27

https://github.com/ctavan/express-validator
https://github.com/emberfeather/less.js-middleware
https://github.com/jaredhanson/passport
https://github.com/evilpacket/helmet
http://github.com/antono/connect-cors
http://github.com/visionmedia/connect-redis

Template Engine

Setting the view engine variable to jade for instance, would
trigger
the following function call internally

app.set('view engine', 'jade') // Shorthand

// Does the same as the above
app.engine(' jade’, ('jade'). _express)

© Node Program, 2016

28

Template Engine

Custom callbacks can be defined to parse templates

app.engine([format], (path, options, callback) {
// Template parsing logic goes here

1)

Note: custom callbacks are useful if the template engine doesn't
export an __express function

© Node Program, 2016 29

Express Bootup

var http = require('http'),
express = require('express')

var app = express()
// ... Configurations, middleware and routes

var server = http.createServer(app)
server. listen(app.get('port'), function () {
// Do something... maybe log some info?

1)

© Node Program, 2016

30

Bootup 2

var http = require('http'),
express = require('express')

var app = express()
// ... Configurations, middleware and routes

app.listen(app.get('port'), function () {
// Do something... maybe log some info?

1)

© Node Program, 2016

31

node server
nodemon server
node-dev server
forever server
pm2 server

A A A A A

© Node Program, 2016

Launching the App

32

Express is awesome! #

Building a RESTful API

ooooooooooooooooo

Also called thick server.

© Node Program, 2016

Traditional Web App

Traditional server-side approach

Browser

Find data
Generate HTML

Full HTML page

Full DOM

Browser

35

Traditional Web App Problems

e Slow and single-tasked (not multitasking)

e Poor and unresponsive UX (user experience)

e Duplication of data hogs bandwidth (HTML)

© Node Program, 2016

36

API + AJAX/XHR Web App

Also called thick client

REST API/AJA approach

rowser

© Node Program, 2016

37

Advantages of a Thick Client

e Responsive interface and UX

e Only data is transmitted (JSON)
e Re-use of the core functionality
e Asynchronous tasks

e Real-time apps

© Node Program, 2016

38

Node, SPAs and REST

Build an APl once and use everywhere

—— | p— ' p— p—
__l/ l‘.,) | I
i \\.‘ » T .- . "0\
&N N\ ,‘;',." |
=
> f“d-—_i-b‘-‘
o
S~ -
(l'-- .
»»»»» .
L/
7 ™,
C}|
- —

© Node Program, 2016

39

© Node Program, 2016

APl Decomposition

APl “Decomposition” is the game changer

& -

<SOAP/XML> {JSON} /

| {JSON} s V

JSON
<TABLE> T v,

StrongLoop:é3

40

© Node Program, 2016

Microservices

Micro-services have arrived

Micro-services Architecture

REST
Endpoints

REMOTING SL APl PaaS

D0-O0mMZZO00

4

4
) / Connectors

i 'Enterprise
- Services

W2 sz 2

Standalone RDBMS NoSQL SOAP

Cc
o
N
N
E
c
T
o]
R

Cache

API Orchestrator

| Log
Console

L Perf.

i Console

i Analytics

E Console
| cache }

xS Cloud
b Services

W2

ERP |

StrongLoop:é3

41

REST Basics

REpresentational State Transfer (REST) is an architectural pattern
for developing network applications

REST systems aim to keep things simple when connecting to and
exchanging data between machines

© Node Program, 2016

42

Why HTTP?

HTTP is the ideal protocol for REST, given its stateless nature and
client-server architecture

e REST is far simpler compared to Remote Procedure Calls (RPC)
and Web Services (SOAP, UDDI, etc)

e RPCs and Web services rely on complex vocabularies for
communication

e Each new operation is a new vocabulary entry, increasing code
complexity

© Node Program, 2016 43

REST Verbs

REST uses HTTP requests (and verbs) for CRUD operations
o GET

e PUT

e POST

e DELETE

© Node Program, 2016

44

And sometimes...

. PATCH
. HEAD
e OPTIONS

© Node Program, 2016

REST Verbs

45

Common Endpoints

GET /tickets - Retrieve a list of tickets
GET /tickets/12 - Retrieve a specific ticket
POST /tickets - Create a new ticket

PUT /tickets/12 - Update ticket #12

DELETE /tickets/12 - Delete ticket #12

PATCH /tickets/12 - Partially update ticket #12
OPTIONS /tickets/12 - What can I do to ticket #127?

HEAD /tickets/12 - What headers would I get if I tried to get ticket #127?

© Node Program, 2016

46

"Resources”

Resources are entities that can be stored on a computer, such as:
e Files
e Database entries

* Processed output from functions

© Node Program, 2016

47

"Resources”

REST uses HTTP requests and responses to provide
representations of resources

For example, the current version of a file available for download via
its URL is a representation of a file resource

Modifying a resource, such as changing the contents of a file or
deleting it, is also a resource state that can be represented via
requests and responses in a REST system

© Node Program, 2016 48

© Node Program, 2016

REST APl Examples

49

Handlers Signatures

e function(request, response, next) {}:request
handler signature

e function(error, request, response, next) {}:error
handler signature

© Node Program, 2016 50

GET Route

app.get('/users', function (request, response) {
// Code to retrieve users
response.send(user)

1)

© Node Program, 2016

51

Accessing URL Parameters

A URI| segment can be parameterized by prefixing it with a semi-
colon

app.get('/users/:id/:another/:segment’, (request, response) { ... })

These dynamic parameters can then be accessed via the request's
params object

GET /users/:id

request.params.id

© Node Program, 2016 52

Multiple URL Parameters

GET /users/:id/:some/:filter

request.params.id
request.params.some
request.params.filter

© Node Program, 2016

53

GET

To allow retrieval by id...

app.get('/users/:1d', (request, response) {
id = request.params.id
// Code to retrieve a single user
response.send(user)

1)

© Node Program, 2016

54

GET

GET handlers can also be used to retrieve a collection of resources

app.get(' /users', (request, response) {
// Code to retrieve multiple users
response.send(users)

1)

© Node Program, 2016

55

POST

To create a resource...

app.post('/users’', (request, response) {
username = request.body.username
emalil = request.body.email

/] ...

// Code to create a new user
response.send(user)

)5

Or maybe just send back the endpoint to get the user...

response.send(' /api/user/' + user.id)

© Node Program, 2016

56

PUT

To update a resource (or create if it doesn't exist, perhaps)...

app.put(' /users/:id', (request, response) {
id = request.params.id
// Check 1f the user exists

(exists) {
// Code to modify the user

J {

// Code to create the user

b

response.send(user);

1)

© Node Program, 2016

57

DELETE

To delete a resource, create a DELETE handler for the desired URI

app.delete('/users/:1d', function (request, response) {
var 1d = request.params.id;

// code to delete the user
response.send(user); // or maybe the URL to create a new user?

1)
Note: del is deprecated.

© Node Program, 2016 58

https://github.com/jspears/mers/issues/33

HT TP Requests

A client's HTTP request is accessible from within routing handlers

It is the first argument in the handler's callback

app.get('/users/:1d', (request, response) {
// 'req' 1s the enhanced http request object

1)

Note: access to the request object grants insight into the client's
HTTP request, providing data on the request header, body, et al.

© Node Program, 2016 59

Query Strings

Express converts a URL's query string into JSON

It can be accessed via the request's query object

GET http://localhost: 3000/ 7”name=Bruce+Wayne&age=40&occupation=Batman

request.query.name // "Bruce Wayne'
request.query.age // "40"
request.query.occupation // "Batman"

© Node Program, 2016 60

Request Body

Enable the json() and urlencoded() middleware to convert
raw form data into JSON

$ npm install body-parser --save

© Node Program, 2016

61

Parsing Request Body

Import middleware:

var bodyParser = require('body-parser')

Parse application/json

app.use(bodyParser.json());

Usage: single-page applications and other JSON REST clients.

© Node Program, 2016

62

Parsing Request Body

Parse application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({extended: false}))

Usage: web forms with action attribute.

© Node Program, 2016

63

Accessing Form Data

Form data is then accessible via the request's body object
(ulrencoded)

// POST name=Bruce+Wayne&age=40&occupation=Your+Average+Businessman

request.body.name
request.body. age
request.body.occupation

© Node Program, 2016

64

File Uploads

File uploads from web forms (multipart/form-data) can be parsed
with these libraries:

e https:/github.com/expressjs/multer
e https:/github.com/yahoo/express-busboy
e https:/github.com/mscdex/connect-busboy

e https:/github.com/andrewrk/node-multiparty

© Node Program, 2016

65

https://github.com/expressjs/multer
https://github.com/yahoo/express-busboy
https://github.com/mscdex/connect-busboy
https://github.com/andrewrk/node-multiparty

Parsing JSON

Parse various different custom JSON types as JSON

app.use(bodyParser.json({ type:

© Node Program, 2016

"application/*+json' 13}))

66

Parsing Buffer

Parse some custom thing into a Buffer

app.use(bodyParser.raw({ type:

© Node Program, 2016

'application/vnd.custom-type' }))

67

Parsing HTML

Parse an HTML body into a string

app.use(bodyParser.text({ type:

© Node Program, 2016

text/html' })

68

HTTP Verbs and Routes

e app.get(urlPattern, requestHandler|,
requestHandler?Z2, ...])

e app.post(ur!

_LPattern, requestHandler[,

requestHand!

ler?2, ...])

e app.put(urlPattern, requestHandler|,
requestHandlerZ2, ...])

e app.delete(urlPattern, requestHandler[,

requestHandler?2, ...])

© Node Program, 2016

69

HTTP Verbs and Routes

e app.all(urlPattern, requestHandler[,
requestHandler?Z2, ...])

e app.param([name,] callback):

e app.use([urlPattern,
requestHandler?’,

requestHandler[,

)

© Node Program, 2016

Request

e request.params: parameters middlware
e request.param: extract one parameter
e request.query: extract query string parameter

e request.route: return route string

© Node Program, 2016

71

Request

e request.cookies: cookies, requires cookieParser

e request.signedCookies: sighed cookies, requires cookie-
parser

e request.body: payload, requires body-parser

© Node Program, 2016

72

e request.

e request.

e request

e request.
e request.

e request.

© Node Program, 2016

Request Header Shortcuts

get(headerKey): value for the header key

accepts(type): checks if the type is accepted

.acceptsbLanguage(language): checks language

acceptsCharset(charset): checks charset
is(type): checks the type
ip: IP address

73

Request Header Shortcuts

e request.ips: IP addresses (with trust-proxy on)
e request.path: URL path

e request.host: host without port number

e request. fresh: checks freshness

e request.stale: checks staleness

e request.xhr: true for AJAX-y requests

© Node Program, 2016

74

Request Header Shortcuts

e request.protocol: returns HTTP protocol
e request.secure: checks if protocol is https
e request.subdomains: array of subdomains

e request.originalUrl: original URL

© Node Program, 2016

75

HT TP Responses

The response object is also accessible via routing handlers in
Express

It is the second argument in the handler's callback

app.get('/users/:1id", (request, response) {
// 'response' 1s the enhanced response from http

)

The response object can be used to modify an HTTP response
before sending it out

© Node Program, 2016 76

Express Response Method

e response.redirect(status, url): redirect request
e response.send(status, data): send response

e response.json(status, data): send JSON and force
proper headers

© Node Program, 2016

77

Express Response Method

e response.sendfile(path, options, callback): send
a file

e response.render(templateName, locals, callback):
render a template

e response. locals: pass data to template

© Node Program, 2016 78

HTTP Status Codes

To specify a status code, use the response object's status function

app.get('/user/:1id", (request, response) {
// Logic to check for user
(lexists) {
response.status(404)
} (authorized) ({
response.status(200)

J {

response.status(401)

7
/] ...

1)

© Node Program, 2016

79

HTTP Status Codes

o 2XX: for successfully processed requests
o 3XX: for redirections or cache information
o 4XX: for client-side errors

o 5XX: for server-side errors

Note: for 3xx status codes, the client must take additional action
following the completion of the current request

© Node Program, 2016 80

Sending a Response

Use the response object's send function to send the client a
response

app.get('...", (request, response) {
response.send('Hello World! ")

1)

© Node Program, 2016

81

Sending a Response

The content-type is determined given the type of argument passed

response.send('Hello World!") // Content-type: text/plain
response.send([5, 7, 9 1) // Content-type: application/json
response.send({ name: 'John Doe' }) // Content-type: application/json

© Node Program, 2016 82

Sending a Response

The content-type can also be hardcoded

response.set('Content-Type', 'text/plain')
response.send(' Just reqgular text, no html expected!')

© Node Program, 2016

83

Sending an Empty Response

response.status(404).end()

© Node Program, 2016

84

Sessions

HTTP is a stateless protocol - information about a client is not
retained over subsequent requests

Use sessions to overcome this problem

Enable the cookieParser and session middleware to process
cookies

© Node Program, 2016

85

Sessions

app.use(express.cookiesParser())
app.use(express.session({ secret: 'notastrongsecret' }))

The session is now accessible via request.session

app.get('...", (request, response) {
session = request.session

1)

© Node Program, 2016 86

Redis Store with Express

$ npm install connect-redis express-session

session = ('express-session'),
RedisStore ('connect-redis')(session)

app.use(session({
store: RedisStore(options),
secret: 'keyboard cat'

7))

© Node Program, 2016

87

e (Clusters
e Nginx
e HAProxy

e Varnish

© Node Program, 2016

Load-balancing

88

DEMO

RESTful APl with Express: https:/github.com/azat-co/rest-api-
express

- @

$ git clone https://github.com/azat-co/rest-api-express.git
$ cd rest-api-express

$ npm install

$ node express.js

© Node Program, 2016 89

https://github.com/azat-co/rest-api-express
https://github.com/azat-co/rest-api-express

e Sails

e LoopBack ™
e Meteor

e Hapi

e Restify

© Node Program, 2016

Alternatives

920

More Alternatives

Registry of hand-picked Node frameworks: nodeframework.com

© Node Program, 2016

921

http://nodeframework.com

© Node Program, 2016

Questions and Exercises

92

Workshop

Ko

“
$ npm i -g expressworks
https:/github.com/azat-co/expressworks

Videos for solutions: YouTube ExpressWorks Playlist

or http:/bit.ly/1jW1sBf

© Node Program, 2016

93

https://github.com/azat-co/expressworks
https://www.youtube.com/watch?v=C2IqQOLCCoU&list=PLguYmmjtxbWGwQRxXqMTQCj6FNb55aFVo
http://bit.ly/1jW1sBf

