10 Photosynthesis is a process that occurs in all green plants.

The electron micrograph shows part of a chloroplast in a plant cell.

(a) (i) The labelled starch grain in the chloroplast is 2.2 μm long. Calculate the width of this chloroplast between T and U.

(2)

.....um

in photosynthesis.	p between the structure and fund	/=\
		(3)
5 " 1	med from the products of the ligl	la de la calacia
		nt-independent
reactions of photosynthesi		
		nt-independent (4)

*(c) Herbicides kill weeds by affecting their growth.

The effect of herbicides on the production of starch in the leaves of *Echinochloa crus-galli* (barnyard grass) has been investigated.

The table shows the results for four herbicides: Diuron, Propanil, Linuron and Swep.

Concentration	Relative percentage of starch produced (%)				
of herbicide / μg cm⁻³	Diuron	Propanil	Linuron	Swep	
0.0	100	100	100	100	
0.1	0	50	50	100	
1.0	0	0	0	50	
10.0	0	0	0	0	
100.0	0	0	0	0	

It is thought that these herbicides act on the light-dependent reactions of photosynthesis.

Devise an investigation that would produce quantitative data on the effectiveness	
of the herbicides on the light-dependent reactions of photosynthesis.	

(6)

(Total for Question 10 = 15 marks)	TOTAL FOR PAPER = 100 MARKS
	(Total for Question 10 = 15 marks)

4	Photosynthesis is a two-stage process by which plants fix carbon dioxide.			
	(a) Describe the light-dependent reactions of photosynthesis.	(5)		

		oducts of the light-dependent reactions are used in the light-independent reactions.	
(1)	ın ۱	which part of the chloroplast do the light-independent reactions take place?	(1)
\times	Α	envelope	
\times	В	granum	
\boxtimes	C	stroma	
\times	D	thylakoid	
(ii)	Wh	nat is the name of the enzyme used by plants to fix carbon dioxide?	(1)
\times	Α	GALPase (glyceraldehyde-3-phosphatase)	
\times	В	GPase (glycerate-3-phosphatase)	
\boxtimes	C	RUBISCO (ribulose bisphosphate carboxylase/oxygenase)	
\boxtimes	D	RuBPase (ribulose bisphosphatase)	
		nich of the following is the immediate product of the light-independent actions of photosynthesis?	(1)
\boxtimes	Α	glucose	
\boxtimes	В	GP	
\boxtimes	C	RuBP	
\boxtimes	D	starch	
		(Total for Question 4 = 8 ma	rks)

10 A student investigated the light-dependent reactions of photosynthesis in spinach leaves.

The leaves were cut into pieces and ground in a cold solution of sucrose and a buffer.

The mixture was filtered and centrifuged. The liquid in the tube was poured off and kept in an ice water bath.

The pellet at the bottom of the tube was suspended by mixing with fresh sucrose and buffer and stored in an ice water bath.

Four tubes were then set up as follows:

Tube	Liquid poured off after centrifuging / cm³	Resuspended pellet / cm³	Sucrose and buffer solution / cm³
1	_	0.5	_
2	_	_	0.5
3	_	0.5	_
4	0.5	-	_

The tubes had 5 cm³ of DCPIP added to them. Tube 3 was kept in the dark and the others kept in the light.

After twenty minutes, the colour in each tube was recorded. The results are shown in the table below.

Tube	Colour in tube	
1	pale green	
2	blue	
3	blue	
4	blue	

(a) (i)	Give two reasons why a cold solution containing sucrose and a buffer was used in this investigation.	(2)
(ii)	Give a reason why tube 3 was used in this investigation.	(1)

(iii) In another investigation, the student wanted to determine the effect of different wavelengths of light on the light-dependent stage of photosynthesis.

The student modified her first investigation to obtain results.

The graph shows the results of her modified investigation.

Explain how the student modified the practical procedure of the first investigation to enable these results to be obtained.

(4)

(b) The diagram shows part of the Calvin cycle (light-independent reactions) of photosynthesis.

Place a cross in the box which indicates the correct stage (A - D) for the following statements.

(i) The stage which involves a condensation reaction and fructose.

(1)

- \times A
- ⊠ B
- × c
- \times D

(ii) The stage where the enzyme RUBISCO is involved.

(1)

- × A
- \times B
- \times C
- \times D

(Total for Question 10 = 9 marks)

- DNA is a polymer made from monomers called nucleotides.
 - (a) Describe how nucleotides join together to form DNA.

(2)

(b) Different theories for DNA replication have been suggested. Figure 1 illustrates two of these theories.

Figure 1

Meselson and Stahl carried out experiments to test these theories for DNA replication.

Figure 2 shows the results from one of their experiments.

DNA from bacteria grown in ¹⁴N and ¹⁵N

DNA samples taken from bacteria after the addition of an excess of ¹⁴N to cells growing in ¹⁵N

Figure 2

for DNA replication ar	id rejected the oth	ier.	(4

(c) The diagram shows the structure of ATP.

$$\begin{array}{c} & & & \\ & &$$

Compare and	contrast the st	ructure of ATP	and a DNA	nucleotide.
Compare and	Contiast the st	i ucture of Arr	and a DIVA	Hacicotiac.

(3)
(Total for Question 7 = 9 marks)

Question Number	Answer	Additional Guidance	Mark
10(a)(i)		Example of calculation	
	correct measurements from the photograph (1)	Starch grain 27mm and width of chloroplast 60mm	
	correct answer (1)	27000 ÷ 22 = 12 273	
		60000 ÷ 12 273 = 4.889 (μm)	
		ALLOW 4.9 / 4.89 / 4.8 recurring (μm)	
		(ALLOW one mark for correct calculation from different measurements)	(2)

Question Number	Answer	Additional Guidance	Mark
10(a)(ii)	An explanation that makes reference to three of the following:		
	• (granum) is formed from many layers of thylakoid membranes to increase surface area (for absorbing light) (1)	ALLOW stacks of thylakoids provide a large surface area	
	thylakoid membranes contain chlorophyll to absorb light (1)	ALLOW photosystems / photosynthetic pigments in place of chlorophyll	
		ALLOW for light dependent reaction in place of absorb light	
	electron carrier molecules in thylakoid membrane involved in ATP production (1)	ALLOW ATP synthase / photophosphorylation	(3)

Question Number	Answer	Additional Guidance	Mark
10(b)	A description that makes reference to the following:		
	two GALP used to produce a glucose molecule (1)	ALLOW triose phosphate instead of GALP	
	• (glucose molecules are) joined together by glycosidic bonds to form starch (1)	ALLOW maltose / polysaccharide	
	• by condensation reactions (1)		
	• producing amylose and amylopectin (1)		(4)

Question Number	Indicative content		
*10(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.		
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.		
	Basic information		
	 Use of all 4 herbicides Control of a variable e.g. temperature, pH or light intensity Variable related to barnyard grass considered e.g. age of plant 		
	Evidence of linkages		
	 Sensible herbicide concentration selected, either a range from 0 to 10 μg cm⁻³ or 0.1 μg cm⁻³ Hill reaction / use of DCPIP to measure light dependent reactions Isolate chloroplasts Method for controlling abiotic variables 		
	Evidence for sustained scientific reasoning		
	 Suitable control described e.g. tubes in the dark Description of how the reaction would be quantified e.g. time taken to decolourise DCPIP / use of a colorimeter Statistical analysis to compare effectiveness of herbicides on photosynthesis Measure of effectiveness described e.g. the more effective the herbicide the longer the time taken to decolourise the DCPIP, the herbicide that had most effect on decolourisation of DCPIP at the lowest concentration 		

Level	Mark	Descriptor	
0	Marks	No awardable content	
Level 1	1-2	An explanation of how the investigation should be modified may be attempted but with limited analysis, interpretation and/or evaluation of the scientific information. Generalised comments made. The explanation will contain basic information with some attempt made to link knowledge and understanding to the given context.	Description of use of herbicides Control of a variable e.g. temperature, pH or light intensity Variable related to barnyard grass considered e.g. age of plant
Level 2	3-4	An explanation of how the investigation should be modified will be given with occasional evidence of analysis, interpretation and/or evaluation of the scientific information. The explanation shows some linkages and lines of scientific reasoning with some structure.	Sensible range of herbicide concentrations between 0 and 100 µg cm ⁻³ Hill reaction / use of DCPIP to measure light dependent reactions Isolate chloroplasts Method for controlling abiotic variables
Level 3	5-6	An explanation of how the investigation should be modified is given which is supported throughout by evidence from the analysis, interpretation and/or evaluation of the scientific information. The explanation shows a well-developed and sustained line of scientific reasoning which is clear, coherent and logically structured.	Focus on range of herbicide concentrations between 0 and 1 µg cm ⁻³ Suitable control described e.g. tubes in the dark Description of how the reaction would be quantified e.g. time taken to decolourise DCPIP / use of a colorimeter Statistical analysis to compare effectiveness of herbicides on photosynthesis

Question Number	Answer	Additional Guidance	Mark
4(a)	A description that makes reference to the following:		
	use of light (energy) to excite electrons in chlorophyll (1)	ALLOW electrons promoted to higher energy level ALLOW photosystem (PS) I or II for chlorophyll	
	{photolysis / splitting of water} to produce oxygen, electrons and hydrogen ions (1)	ALLOW correct equation	
	 electrons used { in the electron transport chain / to replace those lost by chlorophyll } (1) 	ALLOW electrons used in redox reactions / electrons move along electron carrier proteins	
	generation of ATP / photophosphorylation (1)		
	reduction of NADP (1)		5

Question Number	Answer	Mark
4(b)(i)	4(b)(i). The only correct answer is C – Stroma	
	A is not correct because light-independent reactions take place in the stroma	
	B is not correct because light-independent reactions take place in the stroma	
	D is not correct because light-independent reactions take place in the stroma	1

Question Number	Answer	Mark
4(b)(ii)	4(b)(ii). The only correct answer is C – RUBISCO (ribulose bisphosphate carboxylase/oxygenase)	
	A is not correct because RUBISCO (ribulose bisphosphate carboxylase/oxygenase) is the enzyme that fixes carbon dioxide	
	B is not correct because is not correct because RUBISCO (ribulose bisphosphate carboxylase/oxygenase) is the enzyme that fixes carbon dioxide	
	D is not correct because is not correct because RUBISCO (ribulose bisphosphate carboxylase/oxygenase) is the enzyme that fixes carbon dioxide	1

Question Number	Answer	Mark
4(b)(iii)	4(b)(iii). The only correct answer is B – GP	
	A is not correct because glucose is made from the products of the light-independent reactions	
	C is not correct because RuBP is the molecule that CO ₂ combines with to form molecules of GP	
	D is not correct because starch is formed from glucose	1

Question	Acceptable Answer	Additional guidance	Mark
Number			
10(a)(i)	An answer that makes reference to the following:		
	{cold / buffered} to stop enzyme denaturation (1)		
	 sucrose to stop osmotic loss of water from chloroplasts (1) 		(2)

Question Number	Acceptable Answer	Additional guidance	Mark
10(a)(ii)	 tube 3 is a control to show DCPIP does not change colour over time (1) 		(1)

Question Number	Acceptable Answer	Additional guidance	Mark
10(a)(iii)	An explanation that makes reference to the following:set up tubes identical to tube 1 so that chloroplasts are		
	available (1)set up several tubes to ensure data is reliable (1)		
	 tubes exposed to light of different wavelengths for same time because time affects number of electrons released / tubes exposed to light of same intensity because intensity affects number of electrons released (1) 		
	 use a colorimeter with a red filter to measure absorbance (1) 		(4)

Question Number	Acceptable Answer	Additional guidance	Mark
10(b)(i)	C		(1)

Question Number	Acceptable Answer	Additional guidance	Mark
10(b)(ii)	A		(1)

(Total for Question 10 = 9 marks)

Question Number	Answer	Additional Guidance	Mark
7 (a)	A description which includes two of the following:	Must be in context of forming a DNA strand	
	• condensation reaction (1)		
	• phosphodiester bonds (1)	ALLOW hydrogen bonding between bases (in context of double strand)	
	DNA polymerase (1)	ALLOW bonds forming between phosphate and deoxyribose	(2)

Question Number	Answer	Additional Guidance	Mark
7 (b)	An explanation which includes the following:	ALLOW light band for ¹⁴ N and heavy band for ¹⁵ N ALLOW nitrogen – 14 /	
	The conservative model was rejected / the semi-conservative model was accepted (1)	nitrogen – 15 ALLOW the evidence {supports semi-conservative model / does not support conservative model}	
	• (due to) generation 1 has a single band which is halfway between $^{15}{\rm N}$ and $^{14}{\rm N}$ (1)	ALLOW medium density	
	 (because) the DNA has one strand containing ¹⁵N and one strand containing ¹⁴N (1) 	ALLOW DNA contains half heavy nitrogen and half light	
	• (in semi-conservative model) further generations would have {a band which is halfway between $^{15}{\rm N}$ and $^{14}{\rm N}$ / no band at $^{15}{\rm N}$ } (1)	ALLOW (in conservative model) further generations would have { no band halfway between ¹⁵ N and ¹⁴ N / a band at ¹⁵ N }	(4)

Question Number	Answer	Additional Guidance	Mark
_	An answer that that makes reference to the following: Similarity • both contain phosphate, pentose sugar and a base (1) and two of the following Differences • a DNA nucleotide contains deoxyribose whereas ATP contains ribose (1) • a DNA nucleotide could contain other bases whereas ATP contains only {adenine / one base type} (1) • a DNA nucleotide contains one phosphate whereas ATP	ACCEPT DNA could contain C, T or G whereas ATP only contains A	Mark
	{contains three phosphates / is a triphosphate} (1)		(3)