QUESTIONS:

- 1. What factor determines which variable control chart should be used?
 - Defects v. defectives
 - The accuracy of the measurement system being used
 - The acceptance sampling plan associated with your product
 - The number of units sampled within each subgroup
- 2. Pencil Makers Incorporated uses an x-bar and R chart of n=5 to monitor the length of pencils coming off the production line. The inspector takes two samples, measures the length and plots their values on the X-bar chart as both data points are outside of the upper control limit and decides to stop the process. What does this mean?
 - Only the process range is out of statistical control
 - Only the process average is out of statistical control
 - Both the average and range are out of statistical control
 - Nothing, the inspector is not executing the control chart appropriately

3. Using the following data points from these 5 sub-groups, calculate R-bar:

- 2
- 3
- 4
- 5

Sub-	ıb- Sample Sample		Sample
group	1	2	3
1	12	15	16
2	14	12	13
3	10	13	13
4	14	16	16
5	14	12	16

- 4. You manufacture a widget and use an x-bar and R chart to monitor your process, where you sample 3 units in each subgroup, and R-bar = 16.0. Estimate the population standard deviation for this process.
 - 16.0
 - 9.5
 - 27.1
 - 13.2
- You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8.
 Identify the lower control limits for the X-bar chart:
 - 220.52
 - 229.48
 - 233.14
 - 218.71

- You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8.
 Identify the upper control limits for the range chart:
 - 5.73
 - 18.23
 - 22.37
 - 24.17
- 7. You're manufacturing a product to a specification of 5.25" <u>+</u> 0.25". You control that process with an X-bar and R chart with a sample size of 5, and your X-bar = 5.20 and R-bar = 0.20. What is the Cpk of your process?
 - 0.775
 - 0.969
 - 1.163
 - 1.243
- 8. What type of variation occurs when a process is out of control?
 - Variable
 - Attribute
 - Common Cause
 - Special Cause
- 9. You build 100 units per day, and your process has an average number of defects per day of 4. What is the probability that in a given production day, you will experience 1 defect?
 - 5.2%
 - 7.3%
 - 9.6%
 - 11.2%
- 10. You're performing a hypothesis test for the population mean and the population standard deviation is unknown. You sample 20 units from your population and you'd like to use a 1-sided test at a 5% significance level. What is the rejection criteria for this hypothesis test?
 - 1.725
 - 1.729
 - 2.086
 - 2.093

SOLUTIONS:

- 1. What factor determines which variable control chart should be used?
 - Defects v. defectives
 - The accuracy of the measurement system being used
 - The acceptance sampling plan associated with your product
 - The number of units sampled within each subgroup
- 2. Pencil Makers Incorporated uses an x-bar and R chart of n=5 to monitor the length of pencils coming off the production line. The inspector takes two samples, measures the length and plots their values on the X-bar chart as both data points are outside of the upper control limit and decides to stop the process. What does this mean?
 - Only the process range is out of statistical control
 - Only the process average is out of statistical control
 - Both the average and range are out of statistical control
 - Nothing, the inspector is not executing the control chart appropriately

The sub-group size for this control chart is five. The inspector stops the inspection after only 2 measurements, which is inappropriate.

The inspector should complete the entire sub-group measurement before making a conclusion about the process.

3. Using the following data points from these 5 sub-groups, calculate R-bar:

- 2
- 3
- 4
- 5

Sub-Sample Sample Sample Range 2 3 group 1 1 12 15 16 4 2 12 13 2 14 3 10 13 13 3 4 14 16 16 2 5 14 12 16 4 3 R-Bar

First, we must solve for the Range value for each sub-group, shown in the far-right hand column.

Then we must take the average value of the 5 sub-group ranges to find the average range value of **3** (R-bar).

- 4. You manufacture a widget and use an x-bar and R chart to monitor your process, where you sample 3 units in each subgroup, and R-bar = 16.0. Estimate the population standard deviation for this process.
 - 16.0
 - 9.5
 - 27.1
 - 13.2

X-Bar and R Chart						
Subgroup Sample Size	X-Bar Factor	Range Factors		Variance Factor		
n	A ₂	D ₃ D ₄		d ₂		
2	1.880	-	3.267	1.128		
3	1.023	-	2.575	1.693		
4	0.729	_	2.282	2.059		
5	0.577	-	2.115	2.326		
6	0.483	-	2.004	2.534		
7	0.419	0.076	1.924	2.704		
8	0.373	0.136	1.864	2.847		
9	0.337	0.184	1.816	2.970		
10	0.308	0.223	1.777	3.078		
15	0.223	0.347	1.653	3.472		
20	0.180	0.415	1.585	3.735		
25	0.153	0.459	1.541	3.931		

We divide R-bar by the factor d_2 , which is based on the n=3 sample size.

Population Standard Deviation $= \hat{\sigma} = rac{\bar{R}}{d_2}$

$$\hat{\sigma} = \frac{\bar{R}}{d_2} = \frac{16}{1.693} = 9.5$$

- You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8.
 Identify the lower control limits for the X-bar chart:
 - 220.52
 - 229.48
 - 233.14
 - 218.71

	X-Bar and R Chart					
Subgroup Sample Size	X-Bar Factor	Actor Range Factors		Variance Factor		
n	A ₂			d ₂		
2	1.880	-	3.267	1.128		
3	1.023	-	2.575	1.693		
4	0.729	-	2.282	2.059		
5	0.577	-	2.115	2.326		
6	0.483	-	2.004	2.534		
7	0.419	0.076	1.924	2.704		
8	0.373	0.136	1.864	2.847		
9	0.337	0.184	1.816	2.970		
10	0.308	0.223	1.777	3.078		
15	0.223	0.347	1.65 3	3.472		
20	0.180	0.415	1.585	3.735		
25	0.153	0.459	1.541	3.931		

Lower Control Limit for \overline{X} : $\frac{LCL_{\overline{X}}}{LCL_{\overline{X}}} = \overline{\overline{X}} - A_2\overline{R}$

The A2 constant for a subgroup sample size of 8 is 0.373.

 $LCL_{\bar{X}} = \bar{X} - A_2\bar{R} = 225 - 0.373 * 12 = 220.52$

- 6. You're manufacturing a widget and using an X-bar and R chart to control the critical feature of the product. Your normal process has the following attributes: X-double bar is 225, R-bar is 12, n = 8. Identify the upper control limits for the range chart:
 - 5.73
 - 18.23
 - 22.37
 - 24.17

X-Bar and R Chart						
Subgroup Sample Size	X-Bar Factor	Range Factors		Variance Factor		
n	A ₂	D ₃	D4	d ₂		
2	1.880	-	3.267	1.128		
3	1.023	-	2.575	1.693		
4	0.729	-	2.282	2.059		
5	0.577	-	2.115	2.326		
6	0.483	-	2.004	2.534		
7	0.419	0.076	1.924	2.704		
8	0.373	0.136	1.864	2.847		
9	0.337	0.184	1.816	2.970		
10	0.308	0.223	1.777	3.078		
15	0.223	0.347	1.653	3.472		
20	0.180	0.415	1.585	3.735		
25	0.153	0.459	1.541	3.931		

First, we must look up the constants required to calculate the upper control limits for the range chart using the sample size (n=8), and we find $D_4 = 1.864$.

Now we can calculate the upper control limits for the Range control chart:

$$UCL_R = D_4 * \overline{R} = 1.864 * 12 = 22.37$$

- 7. You're manufacturing a product to a specification of 5.25" <u>+</u> 0.25". You control that process with an X-bar and R chart with a sample size of 5, and your X-bar = 5.20 and R-bar = 0.20. What is the Cpk of your process?
 - 0.775
 - 0.969
 - 1.163
 - 1.243

The first thing we must do is to convert the average range (R-bar) into an estimate of the population standard deviation using the following equation. Because our sample size is 5, the d2 value is 2.326.

Population Standard Deviation = $\hat{\sigma} = \frac{R}{d_2}$

$$\hat{\sigma} = \frac{\bar{R}}{d_2} = \frac{0.2}{2.326} = 0.086$$

X-Bar and R Chart						
Subgroup Sample Size	X-Bar Factor Range Factor		Factors	Variance Factor		
n	A ₂	D3	D ₄	d ₂		
2	1.880	-	3.267	1.128		
3	1.023	-	2.575	1.693		
4	0.729	-	2.282	2.059		
5	0.577	-	2.115	2.326		
6	0.483	-	2.004	2.534		
7	0.419	0.076	1.924	2.704		
8	0.373	0.136	1.864	2.847		
9	0.337	0.184	1.816	2.970		
10	0.308	0.223	1.777	3.078		
15	0.223	0.347	1.653	3.472		
20	0.180	0.415	1.585	3.735		
25	0.153	0.459	1.541	3.931		

Now, we can solve for the Cpk given the specification limits (5.50" and 5.00"), along with the center of our process (5.20").

$$C_{pk} = Min(C_{p,Lower}, C_{p,Upper}) = Min\left(\frac{USL - \tilde{x}}{3s}, \frac{\tilde{x} - LSL}{3s}\right)$$

$$C_{pk} = Min\left(\frac{5.50 - 5.20}{3 * 0.086}, \frac{5.20 - 5.00}{3 * 0.086}\right) = Min\left(\frac{0.300}{0.258}, \frac{0.200}{0.258}\right) = Min(1.163, 0.775) = 0.775$$

8. What type of variation occurs when a process is out of control?

- Variable
- Attribute
- Common Cause
- Special Cause

- 9. You build 100 units per day, and your process has an average number of defects per day of 4. What is the probability that in a given production day, you will experience 1 defect?
 - 5.2%
 - 7.3%
 - 9.6%
 - 11.2%

To calculate the probability of occurrence when using the Poisson distribution, we use the following equation:

$$f(x) = P(X = x) = \frac{e^{-\lambda} * \lambda^{x}}{x!}$$
$$f(1) = P(X = 1) = \frac{e^{-4} * 4^{1}}{1!} = 0.073 = 7.3\%$$

- 10. You're performing a hypothesis test for the population mean and the population standard deviation is unknown. You sample 20 units from your population and you'd like to use a 1-sided test at a 5% significance level. What is the rejection criteria for this hypothesis test?
 - 1.725
 - 1.729
 - 2.086
 - 2.093

Because we do not know the population standard deviation and we're sampling less than 30 units we must use the t distribution for our hypothesis test.

Based on the 1-sided test, and 5% significance level, we can look up the critical t-value associated with 5% significance and 19 degrees of freedom to be $t_{crit} = \sim 1.729$

Critical Values of the Student T's Distribution at Various Degrees of Freedom and Alpha Levels (α)							
df (v)	α = 0.1	α = 0.05	α = 0.025	α = 0.01	α = 0.005	α = 0.001	
1	3.078	6.314	12.706	31.821	63.657	318.309	
2	1.886	2.920	4.303	6.965	9.925	22.327	
17	1.333	1.740	2.110	2.567	2.898	3.646	
18	1.330	1.734	2.101	2.552	2.878	3.610	
19	1.328	1.729	2.093	2.539	2.861	3.579	