

Complex Numbers Problem Set 1

- 1. For each complex number z given below, find the modulus, |z|, and the principal argument, arg z. [*no calculator*]
 - (a) $z = \frac{1-i}{1+i}$ (b) $z = \frac{-1-7i}{4+3i}$
- 2. Find all complex solutions to the equation $z^4 + 81 = 0$ and express them in Cartesian form; that is, in the form z = a + ib. [*no calculator*]
- 3. (a) Using de Moivre's theorem, find identities for $\sin 4\theta$ and $\cos 4\theta$ expressed only in terms of $\sin \theta$ and $\cos \theta$.
 - (b) Hence, show that $\tan 4\theta = \frac{4\tan\theta 4\tan^3\theta}{1 6\tan^2\theta + 4\tan^4\theta}$, [*no calculator*]