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1.  Introduction

2. Division and Fractions
We discover here how the fractions of integers are related to the division of integers.

2.1 The euclidian division in the integers set 

Theorem 1

Assume  are integers such as .

Then there exists a unique couple of integers  such as:

• ,

• and .

Definition

Assume  are integers such as .

Then the unique couple of integers  such as:

• ,

• and .

is composed of the quotient  and the remainder  of the euclidian division of  by .

Notation

Assume  are integers such as .

Assume  and  are respectively the quotient and the remainder of the euclidian division of 
 by .

Then this is denoted , remains .

ℤ

(a, b) ∈ ℤ × ℕ* b > 0

(q, r) ∈ ℤ × ℕ*

a = bq + r

0 ≤ r ≤ b − 1

(a, b) ∈ ℤ × ℕ* b > 0

(q, r) ∈ ℤ × ℕ*

a = bq + r

0 ≤ r ≤ b − 1

q r a b

(a, b) ∈ ℤ × ℕ* b > 0

q r
a b

a ÷ b = q r
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Proof of theorem 1

Assume  are integers such as .

Existence of the couple  that fulfils the conditions:

If , then  and  fulfil the conditions.

Assume , and define the sequence  by the recursive property:

• r_0=a,

• r_{k+1}=r_k-b.

Then the sequence is strictly decreasing in , so that there exists only a finite number of 
indexes  such as .

Let’s denote  the last index such as , and let’s define , and .

Then , and , so that .

Consequently, , and .

Assume now , so that  is such as .

Let’s define  the couple such as  and .

If , then , so that , with , and .

Let’s assume now the .

Then , with  and 
.

It remains to prove that .

But , such as , that is .

And , so that , that implies .

QED

(a, b) ∈ ℤ × ℕ* b > 0

(q, r) ∈ ℤ × ℕ*

0 ≤ a ≤ b − 1 q = 0 r = a

a ≥ b (rk, k ≥ 0)

ℤ
k ≥ 0 rk ≥ 0

k0 rk ≥ 0 q = k0 r = rk0

r = a − qb r − b < 0 r ≤ b − 1

a = bq + r 0 ≤ r ≤ b − 1

a < 0 a′ = − a pa′ 0

(q′ , r′ ) ∈ ℤ × ℕ* a′ = bq′ + r′ 0 ≤ r′ ≤ b − 1

r′ = 0 a′ = q′ b a = − a′ = (−q′ )b = qb + r q = − q′ r = 0

r′ > 0

a = − a′ = b(−q′ ) − r′ = b(−q′ − 1) + (b − r′ ) = bq + r q = − q′ − 1
r = b − r′ 

0 ≤ r ≤ b − 1

r′ > 0 b − r′ < b r ≤ b − 1

r′ ≤ b − 1 b − r′ ≥ 1 r ≥ 0
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2.2 Fractions of integers

Definition 2

Assume  are integers such as .

Then the fraction  is the unique quantity such as .

The integer  is the numerator of the fraction , and the non-zero integer  is its 

denominator.

Theorem 2

Assume  are integers of any sign.

Then the fraction  is equal to the integer  if and only if .

Proof

 Assume  are integers of any sign.

If , then the fraction  is equal to the integer , because .

Assume now that the fraction  is equal to the integer .

Then , because .

Theorem 3

For any integer , the fraction  is equal to the integer .

Proof 

For any integer , .

Definition 3

Assume  are integers such as .

Then  is a multiple of  (or  is a divider of ) if there exists a non-zero integer  
such as .

(a, b) ∈ ℤ × ℤ* b ≠ 0
a
b

b ×
a
b

= a

a
a
b

b

(a, b) ∈ ℤ2

a
b

0 a = 0

(a, b) ∈ ℤ2

a = 0
a
b

0 b × 0 = 0

a
b

0

a = 0 b × 0 = 0

a ∈ ℤ
a
1

a

a ∈ ℤ 1 × a = a

(a, b) ∈ ℤ × ℤ* b ≠ 0

a b b a k ∈ ℤ*
a = kb
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Theorem 4

Assume  are integers such as  and  is a multiple of .

Then the non-zero integer  such as  is unique.

Proof

Assume  are integers such as  and  is a multiple of .

Assume  are integers such as  and .

Then , and .

Consequently .

QED

Theorem 5

Assume  are integers such as  and  is a multiple of . Then the 

fraction  is equal to the integer  such as .

Corollary 1

Any integer has an infinity of representations as fractions.

Proof of the corollary 1

Assume  is any integer.

For any non-zero integer ,  because of theorem 5. 

Proof of the theorem 5

Assume  are integers such as  and  is a multiple of .

Let’s consider the integer   such as . Then, by definition of the fraction , is is 

equal to the integer .

3.1 The non-negative decimal numbers and the powers of 10

Definition 4

A decimal number is a number  for which there exist natural integers  such as 

.

(a, b) ∈ ℤ × ℤ* b ≠ 0 a b

k ∈ ℤ* a = kb

(a, b) ∈ ℤ × ℤ* b ≠ 0 a b

(k1, k2) ∈ ℤ × ℤ* a = k1b a = k2b

(k1 − k2)b = k1b − k2b = a − a = 0 b ≠ 0

k1 = k2

(a, b) ∈ ℤ × ℤ* b ≠ 0 a b
a
b

k a = kb

k ∈ ℤ

b ∈ ℤ*
kb
b

= k

(a, b) ∈ ℤ × ℤ* b ≠ 0 a b

k ∈ ℤ a = kb
a
b

k

x (X, N ) ∈ ℕ2

x =
X

10N
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Notation

For any natural  with , given the decimal expansion of 

, the decimal number  is denoted with a decimal point 

between  and : .

The integer  is called the entire part of , and the sequence of the  
last digits  of  is called the decimal part of .

Proposition 1

In the particular case where  and  any natural integer, the decimal number 

 is the integer .

Proof

For any natural integer , , that is the integer  because of the 

theorem 1.

3.2 The representations of the decimal numbers

Theorem 6

For any decimal number , with , and for any  such as , 

another representation of  is , where  is the natural integer equal to  filled with 

 zeroes to the left.

Corollary 2

For any decimal representation of a decimal number  with a decimal point, you may add as 
many additional zeroes to the left of the decimal part of .

In the particular case where  is an integer, you may add a decimal point, and as may zeroes 
as you wish after it.

Proof of Corollary 2

Assume  are two natural integers, and assume  is a natural integer such 
as .

If , the decimal part of  is the sequence of the  last digits.

(X, N ) ∈ ℕ × ℕ* N > 0 X

X = XK XK−1…XN XN−1…X0 x =
X

10N

XN XN−1 x = XK XK−1…XN ∙ XN−1…X0

E[x] = XK XK−1…XN x N
XN−1…X0 X x

N = 0 X ∈ ℕ

x =
X

10N
X

X ∈ ℕ
X

10N
=

X
100

=
X
1

X

x =
X

10N
(X, N ) ∈ ℕ2 M ∈ ℕ M > N

x x =
Y

10M
Y X

M − N

x
x

x

(X, N ) ∈ ℕ2 M ∈ ℕ
M > N

N > 0 x =
X

10N
N
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And if we add  zeroes to the left of  to obtain , the decimal part of  is the 

 last digits of , that are the decimal part of  plus  zeroes to the left.

And because of theorem 2, the decimal number  and  are equal to each other.

If ,  has no decimal part.

And if we add  zeroes to the left of  to obtain , the decimal part of  

is the  last digits of , that are composed of   zeroes to the left.

And because of theorem 2, the decimal number  and  are equal to each other.

QED

Proof of theorem 6

Assume  are two natural integers, and assume  is a natural integer such 
as .

If  is the natural integer equal to  filled with  zeroes to the left, then it is the 
product  of  and .

Moreover,  is the product  of  by .

But we shall see in § 4.2 below, that if we multiply the numerator and denominator of a 
fraction by a same quantity, the resulting fraction is equal to the initial fraction.

Consequently, the decimal numbers  and  are equal.

QED

M − N X Y y =
Y

10M

M Y X M − N

y x

N = 0 x =
X

10N

M − N = M X Y y =
Y

10M

M Y M

y x

(X, N ) ∈ ℕ2 M ∈ ℕ
M > N

Y X M − N
Y = 10M−N X X 10M−N

10M 10M = 10M−N × 10N 10N 10M−N

x =
X

10N
y =

Y
10M
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4. Equality of fractions

4.1 The Signs Rules for fractions

Definition 6

Assume  is an integer of any sign.

Then the absolute value  of  is define as, depending on the sign of :

• If , then .

• If , the .

• If , then , the positive opposite of .

Definition 7

Assume  are integers such as . Then the following signs rules apply:

• If , then  is the integer .

• If  and  or  and , then .

• If  and , or  and , then .

Theorem 7

The definition 5 is consistent with the signs rules for the multiplication in , and with the 
theorems 2 and 3.

As a matter of fact, the definition 5 generalises the signs rules in .

Proof

Assume  are integers such as .

1) :

As , then, because of theorem 3,  is the integer .

2)  and :

Then, because of theorem 3,  is the integer , being of the same sign than .

x ∈ ℤ

|x | x x

x = 0 |x | = 0

x > 0 |x | = x

x < 0 |x | = − x x

(a, b) ∈ ℤ × ℤ* b ≠ 0

a = 0
a
b

0

a > 0 b > 0 a < 0 b < 0
a
b

=
|a]
|b |

> 0

a < 0 b > 0 a > 0 b < 0
a
b

= −
|a]
|b |

< 0

ℤ

ℤ

(a, b) ∈ ℤ × ℤ* b ≠ 0

a = 0

0 = 0 × b
a
b

0

b = 1 a ≠ 0
a
b

a a
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Namely,  when  (and ), and  when  

(and ).

Consequently, the definition 5 is consistent with the theorem 1.

3)  is a multiple of  and :

Assume  is the natural integer such as .  because  and  is 
absorbent for the multiplication in .

Then, because of theorem 4,  is the non-zero integer .

But because of the signs rules in :

• If , then either  and  or  and . This is consistent with the 

fact that is those cases, .

• And if , then either  and  or  and . This is consistent with 

the fact that is those cases, .

Consequently, the definition 5 is consistent with the signs rules in  and with the theorem 2.

QED

4.2 The cross product rule

Theorem 8

Assume  are non-zero integers such as  and .

Then the fractions  and  are equal if and only if .

Corollary 3

Assume  are integers such as .

Then the fraction  is equal to the integer  if and only if .

a
b

=
|a]
|b |

> 0 a > 0 b = 1 > 0
a
b

= −
|a]
|b |

< 0 a < 0

b = 1 > 0

a b a ≠ 0

k ∈ ℕ a = kb k ≠ 0 a ≠ 0 0
ℤ

a
b

k

ℤ

k > 0 a > 0 b > 0 a < 0 b < 0
a
b

=
|a]
|b |

> 0

k < 0 a > 0 b < 0 a < 0 b > 0
a
b

= −
|a]
|b |

< 0

ℤ

(a, b, c, d ) ∈ ℤ4 b ≠ 0 d ≠ 0
a
b

c
d

ad = bc

(a, b, c) ∈ ℤ3 b ≠ 0
a
b

c a = bc
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Proof of corollary 3

Because of theorem 2, the integer  is equal to the fraction .

Consequently, because of theorem 6, the fraction  is equal to the integer  if and only if 

, with . 

QED

Proof of theorem 8

Assume  are non-zero integers such as  and .

Assume .

Then, by definition 2, , so that .  And , so that 

.

Consequently, as ,  .

Assume now .

But the fraction  is such as , and the fraction  is such as .

Then  and .

Consequently, because , .

QED

4.3 The multiplicative rule for fractions

Theorem 9

Assume  are integers such as  and .

Then the fraction  is equal to the fraction .

c
c
1

a
b

c

a × 1 = bc a × 1 = a

(a, b, c, d ) ∈ ℤ4 b ≠ 0 d ≠ 0
a
b

=
c
d

b ×
a
b

= a bd ×
a
b

= ad d ×
c
d

= c

bd ×
c
d

= bc

a
b

=
c
d

ad = bc

ad = bc
a
b

b ×
a
b

= a
c
d

d ×
c
d

= c

bc ×
a
b

= ac ad ×
c
d

= ac

bc = ad
a
b

=
c
d

=
ac
bc

(a, b, k) ∈ ℤ × ℤ* × ℤ* b ≠ 0 k ≠ 0

ka
kb

a
b
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Corollary 4

Any fraction has an infinity of “representations” (all the fractions that are equal to it).

The corollary 4 is a direct consequence of the theorem 6.

Proof of theorem 9

Assume  are integers such as  and .

Then, because of the commutativity and associativity of the multiplication in , 

 so that, because of theorem 8,  .

QED

5. Simplify fractions down to there canonical form

5.1 Simplification with the Signs Rules

Theorem 8

Assume  are integers of any signs such as .

Then we may simplify the fraction  the following way, depending on the signs of  and :

1. If , then , whatever the sign of .

2. If , with  and  with , then .

3. If , with  and  with  , then .

4. If , with  and  with , then .

5. If  , with  and  with , then .

The theorem 8 is a rewording of the definition 6, together with the definition 5 of the 
absolute value. 

A consequence of theorem 8 is that the fraction of non-zero integers are all equal to either a 
fraction of positive integers, of the opposite of such a fraction.

Thus we may simplify further the only fractions of positive integers.

(a, b, k) ∈ ℤ × ℤ* × ℤ* b ≠ 0 k ≠ 0

ℤ

(ka)b = (kb)a
ka
kb

=
a
b

(a, b) ∈ ℤ × ℤ* b ≠ 0

a = 0
a
b

= 0 b

a = p p > 0 b = q q > 0
a
b

=
p
q

( > 0)

a = p p > 0 b = − q q > 0
a
b

= −
p
q

( < 0)

a = − p p > 0 b = q q > 0
a
b

= −
p
q

( < 0)

a = − p p > 0 b = − q q > 0
a
b

=
p
q

( > 0)
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5.2 Further Simplification of Fractions of Positive Integers

Theorem 9

Assume  are positive integers.

Assume there exists a positive integer , that is a non-one common divider of  
 and , with  being such as  and .

Then , with  and .

Proof

Because of theorem 8, and as   and , the fractions  and  are equal.

Moreover, as , and  is a positive integer, then .

Consequently, , and .

QED

5.3 Down to the Canonical Form

Definition 7

A fraction of positive integers , with , is said to be irreducible if and only if 

it can not be simplified.

Theorem 10

For any couple of positive integers , the fraction  is irreducible if and only 

if  and  are mutually prime.

The theorem 10 is a direct consequence of the theorem 9 and of the definition B.2 in 
appendix B. 

(p, q) ∈ (ℕ*)2

k ∈ ℕ* − {1}
p q (p′ , q′ ) ∈ (ℕ*)2 p = kp′ q = kq′ 

p
q

=
p′ 
q′ 

p′ < p q′ < q

p = kp′ q = kq′ 
p
q

p′ 
q′ 

k ≠ 1 k k ≥ 2

p ≥ 2p′ > p′ q ≥ 2q′ > q′ 

p
q

(p, q) ∈ (ℕ*)2

(p, q) ∈ (ℕ*)2 p
q

p q
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Theorem 11

For any  fraction of positive integers, there is an only irreducible fraction of positive 
integers that is equal to it.

That theorem is proved in Appendix A.

Definition 8

The canonical form of a fraction of positive integers is based on its unique irreducible 
representation: it is the irreducible representation unless the denominator of the latter is 
equal to , in which case the canonical form is the numerator of that irreducible 
representation.

Theorem 12

The successive simplifications of a fraction of positive integers ends with its canonical form.

Proof

The simplification of a fraction of positive integers is a strictly decreasing process fo both 
its numerator and denominator.

Consequently, as each pair “numerator and denominator” are pairs of positive integers, they 
both decrease by at least  at each simplification process, and they keep minored by .

So that the iterative simplifications ends in a finite numbers of steps.

And the final state is the canonical form, because it can not be simplified further.

QED

Theorem 13

Assume  are positive integers such as , following definition 
B.3 of the appendix B.

Then, if  and , with the notation of definition B.4 in appendix B, the 

canonical form of the fraction   is the fraction , unless , in which case its 

canonical form is the integer .

That theorem is a direct consequence of theorem B.4 and definition 8.

1

1 1

(p, q, k) ∈ (ℕ*)3 k = GCD(a, b)

p′ = p ÷ k q′ = p ÷ k
p
q

p′ 
q′ 

q′ = 1

1
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Here is the Python code to calculate the numerator and denominator of the canonical form 
of a fraction of positive integer, given by its numerator and denominator (the function 
“Euclid” is defined by the Python code at the end of appendix B):

def simplify(num,den):

    gcd=Euclid(num, den)

    num=num//gcd

    den=den//gcd

    if den==1:

        return(num)

    else:

         return (num,den) 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Appendix A 

Proof of Theorem 11


A.1 The Fundamental Theorem of Arithmetics
Definition A.1

A non-one positive integer  is said to be a prime number if it has no other 
divider except .

Lemma A.1

Assume  is any positive integer.

Then either  is a prime number, of  has a prime factor  (  is a prime number and a  
divider of ).

Theorem A.1 (Fundamental theorem of Arithmetics)

Assume  is any non-one positive integer.

Then there exists a unique sequence of prime numbers  and a 
unique sequence of positive integers  such as:

• if , ,

• and 

Definition A.2

The prime numbers  defined in theorem A.1 are called the 
prime factors of , with the respective multiplicities the positive integers 

.

The formula  is called the prime numbers decomposition of the positive 

integer .

p ∈ ℕ* − {1}
1

p ∈ ℕ*

p p k ∈ ℕ* k
p

p ∈ ℕ* − {1}

(k1, k2, …, kn) ∈ (ℕ* − {1})n

(m1, m2, …, mn) ∈ (ℕ*)n

n ≥ 2 k1 < k2 < … < kn

p = km1
1 km2

2 …k mn
n

(k1, k2, …, kn) ∈ (ℕ* − {1})n

p
(m1, m2, …, mn) ∈ (ℕ*)n

p = km1
1 km2

2 …k mn
n

p
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Proof of Lemma A.1

Let’s prove the result by recursion on .

Initialisation: 

 is a prime number, because if  is a non-one divider of , then  is an 
integer such as , and thus .

Recursion:

Hypothesis: For some , the result is fulfilled for any integer  such as .

Let’s denote , and let’s prove the result for .

If  is a prime number, the result is obvious.

Assume then  is a not a prime number, and let’s denote  a divider of  that is neither 
equal to  nor to .

Then  is an integer such as , so that .

Then, because of the hypothesis of recursion, either  is a prime number, and thus it is a 
prime factor of , or it has a prime factor .

In the last case, let’s denote  the positive integer such as , and  the positive 
integer such as .

Then  because of the associativity of the multiplication.

Consequently,  is a prime factor of .

QED

Proof of theorem A.1

Let’s prove the existence of the decomposition of a non-one positive integer  
in prime factors par recursion on .

The proof of the uniqueness of such a decomposition is rather complicated, and we shall 
admit it.

Initialisation: 

As  is a prime number, the result in fulfilled with ,  and : .

p ≥ 2

p = 2

p = 2 k ∈ ℕ* − 1 2 k
1 < k ≤ 2 k = 2

p ≥ 2 q 2 ≤ q ≤ p

p+ = p + 1 p+

p+

p+ k p+

1 p+

k 1 < k < p+ 2 ≤ k ≤ p

k
p+ k′ 

p′ p+ = kp′ k′ ′ 
k = k′ k′ ′ 

p+ = (k′ k′ ′ )p′ = k′ (k′ ′ p′ )

k′ p+

p ∈ ℕ* − {1}
p ≥ 2

p = 2

2 n = 1 k1 = 2 m1 = 1 p = 21
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Recursion:

Hypothesis: For some , the result is fulfilled for any integer  such as .

Let’s denote , and let’s prove the result for .

If  is a prime number, the result is fulfilled with ,  and .

Assume then  is a not a prime number, and let’s denote  the smaller prime factor  of .

Assume  is the non-one positive integer such as , with .

Then, because of the hypothesis of recursion, there exists  
and a unique sequence of positive integers  such as:

• if , ,

• and 

Moreover, as  is the smaller prime factor of ,  .

If , then the result is fulfilled for  with , , 
, and  

If , then the result is fulfilled for with , , 
, and .

This ends the proof of the existence of a decomposition into prime factors of any non-one 
positive integer.

p ≥ 2 q 2 ≤ q ≤ p

p+ = p + 1 p+

p+ n = 1 k1 = p+ m1 = 1

p+ k1 p+

p′ p+ = k1p′ 2 ≤ p′ ≤ p

(k′ 1, k′ 2, …, k′ n′ ) ∈ (ℕ* − {1})n′ 

(m′ 1, m′ 2, …, m′ n′ ) ∈ (ℕ*)n′ 

n′ ≥ 2 k′ 1 < k′ 2 < … < k′ n′ 

p′ = k′ 1
m′ 1k′ 2

m2…k′ n′ 
m′ n′ 

k1 p+ k1 ≤ k′ 1

k1 < k′ 1 p+ n = n′ + 1 (k2, …, kn) = (k′ 1, k′ 2, …, k′ n′ )
m1 = 1 (m2, …, mn) = (m′ 1, m′ 2, …, m′ n′ )

k1 = k′ 1 p+ n = n′ (k1, k2, …, kn) = (k′ 1, k′ 2, …, k′ n)
m1 = m′ 1 + 1 (m2, …, mn) = (m′ 2, …, m′ n)
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A.2 Proof of Theorem 11
Lemma A.2

Assume  are positive integers.

Then  and  are mutually prime if and only if at least one of the following conditions is 
true:

1. ,

2. ,

3. ,  and they share no prime factor.

Proof

If  and/or , as  has no divider except itself,  and  are mutually prime.

If ,  and they are mutually prime, then they share no divider except , that is not 
a prime number. Consequently, they share no rime factor.

Assume now ,  and they share no prime factor, and let’s prove that they are 
mutually prime.

Indeed, if they were not mutually prime, they would have a common factor .

But because of lemma A.1,  is either a prime number, and thus a common prime factor of  
and , or it would have a prime factor , that would be a common prime factor of  and .

This is in contradiction with the hypothesis that they don’t share any prime factor.

Hence they are mutually prime.

QED 

(p, q) ∈ (ℕ*)2

p q

p = 1

q = 1

p ≠ 1 q ≠ 1

p = 1 q = 1 1 p q

p ≠ 1 q ≠ 1 1

p ≠ 1 q ≠ 1

k ≠ 1

k p
q k′ p q
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Appendix B 

The Greater Common Divider of Integers


B.1. The common dividers of Two Positive Integers
Definition B.1

Assume  are positive integers.

Then  is a common divider of  and  if there exist positive integers   such 
as  and .

Proposition B.1

 is a common divider of any two positive integers.

Proof

Assume  are positive integers.

Then  is a common divider of  and , because  and .

B.2 Mutually Prime Positive Integers
Definition B.2

Assume  are positive integers.

Then  and  are mutually prime if and only if they don’t share any common divider except 
.

(a, b, k) ∈ (ℕ*)3

k a b (a′ , b′ ) ∈ (ℕ*)2

a = ka′ b = kb′ 

1

(a, b) ∈ (ℕ*)2

1 a b a = 1 × a b = 1 × b

(a, b) ∈ (ℕ*)2

a b
1
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B.3 The GCD of two Positive Integers
Theorem B.2

The common dividers of two positive integers  have a unique common divider 
 that is greater or equal to all the common dividers of  and .

Definition B.3

The Greater Common Divider of two positive integers , is the positive integer 
 such as:

•  is a common divider of  and ,

• and no common divider of  and  is strictly greater than .

Proof of theorem B.2

Assume  are positive integers, and assume  are common 
dividers of  and  such as, for any common divider ,  and .

Then  and , so that .

QED

Theorem B.3

Two positive integers  are mutually prime if and only if there greater common 
divider if equal to 

Definition B.4

Assume  are positive integers such as  is a divider of .

Then “  divided by ” is the positive integer  such as .

Note that it is the quotient of the euclidian division of  by , the rest being equal to .

Theorem B.4

Assume  are positive integers, and assume  is the greater common 
divider of  and . Then  and  are mutually prime.

(a, b) ∈ (ℕ*)2

k a b

(a, b) ∈ (ℕ*)2

k = GCD(a, b)

k a b

a b k

(a, b) ∈ (ℕ*)2 (k1, k2) ∈ (ℕ*)2

a b k ∈ ℕ* k1 ≥ k k2 ≥ k

k1 ≥ k2 k2 ≥ k1 k1 = k2

(a, b) ∈ (ℕ*)2

1

(a, b) ∈ (ℕ*)2 b a

a b k = a ÷ b a = kb

a b 0

(a, b) ∈ (ℕ*)2 k ∈ ℕ*
a b a′ = a ÷ k b′ = b ÷ k
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Proof

Assume  are positive integers, and assume .

Denote , , and .

Denote  and .

Then  and , so that  is a 
common divider of  and .

Hence  by definition of the greater common divider.

But , with equality if and only if , so that  and  are mutually prime (cf. 
theorem B.3).

B.4 The euclidian algorithm to calculate the GCD
Theorem B.5

Assume  are positive integers, and assume  and  is the remainder of 
the euclidian division of  by .

Then either  and , or .

Proof

Assume  are positive integers, and assume  and  is the rest of the 
euclidian division of  by .

Assume first . 

Then  is a divider if , so that it is a common divider if  and  (because ).

If  is a common divider of  and , then it is a divider of , so that .

Consequently, .

Assume now , so that  and  are positive integers.

Denote  and , and let’s prove .

Denote  the quotient of the euclidian division of  by .

Then, because  is the remainder of that division,  (and , so that 
).

Denote  the positive integers such as  and .

(a, b) ∈ (ℕ*)2 k = GCD(a, b)

a′ = a ÷ k b′ = b ÷ k k′ = GCD(a′ , b′ )

a′ ′ = a′ ÷ k′ b′ ′ = b′ ÷ k′ 

a = ka′ = k (k′ a′ ′ ) = (kk′ )a′ ′ a = kb′ = k (k′ b′ ′ ) = (kk′ )b′ ′ kk′ 
a b

kk′ ≤ k

kk′ ≥ k k′ = 1 a′ b′ 

(a, b) ∈ (ℕ*)2 a′ = b b′ 
a b

b′ = 0 a′ = GCD(a, b) GCD(a′ , b′ ) = GCD(a, b)

(a, b) ∈ (ℕ*)2 a′ = b b′ 
a b

b′ = 0

b a a b b = 1 × b

k a b b k ≤ b

b = GCD(a, b)

b′ ≠ 0 a′ b′ 

k = GCD(a, b) k′ = GCD(a′ , b′ ) k = k′ 

q a b

b′ a = qb + b′ b = a′ 
a = qa′ + b′ 

(a′ ′ , b′ ′ ) ∈ (ℕ*)2 a′ = k′ a′ ′ b′ = k′ b′ ′ 
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Then ,  and , so that  is a common divider of  and , and 
.

On the other hand,  and .

So that, if we denote  he positive integers such as  and , 
 and .

Consequently,  is a common divider of  and , and .

As a conclusion  and , so that .

QED

The euclidian algorithm

Initialisation:

Acquire two positive integers  and .

Preprocessing:

If , exchange  and :

Memorise  in the intermediate variable .

Replace  by .

Replace  by .

Processing (with ):

While 

Memorise  in the intermediate variable .

Replace  by .

Replace  by the remainder of the euclidian division of  by ..

(at the end of the conditional loop, ): output .

a = k′ (qa′ ′ + b′ ′ ) b = k′ a′ ′ k′ a b
k′ ≤ k

a′ = b b′ = a − qb

(a′ ′ ′ , b′ ′ ′ ) ∈ (ℕ*)2 a = ka′ ′ ′ b = kb′ ′ ′ 
a′ = kb′ ′ ′ b′ = k (a′ ′ ′ − qb′ ′ ′ )

k a′ b′ k ≤ k′ 

k′ ≤ k k ≤ k′ k = k′ 

a b

a < b a b

a a1

a b

b a1

a ≥ b

b > 0

a a0

a b

b a0 b

b = 0 a
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Theorem B.6

The euclidian algorithm calculate the GCD of the input variables  and  in a finite, les or 
equal than the initial , of the conditional loop.

Proof

1) The number of steps is finite and less or equal than the initial :

As the remainder  of an integer  by an integer  is between  and , each step of 
the algorithm results in a decreasing of at least  of the variable , that keeps minored by .

So after at most  steps, the variable  becomes equal to .

2) The final value of  is the GCD of the initial values of  and :

Because of the preprocessing, we may assume . 

And because of theorem B.5, each step of the conditional loop lets the GCD of  and  
unchanged.

The final value of  goes with a value of  equal to zero.

Consequently, because of theorem B.5 again, it is the GCD of the previous values of  and 
, that is equal to the GCD of the initial values of  and .

QED

Python code for the euclidian algorithm 

def Euclid(a,b):

    if a<b:

        a1=a

        a=b

        b=a1

    while b>0:

        a0=a

        a=b

        b=a0%b

    return a


a b
b

b

r D d ≤ D 0 d − 1
1 b 0

b b 0

a a b

a ≥ b

a b

a b

a
b a b
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