2001

1

LSS Green Belt Training initiated

2 0 2003

LSS Black Belt Training initiiated

Master Black Belt initiated ل 2013

4

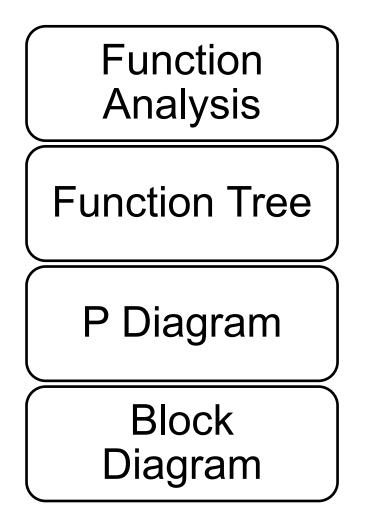
Business Value Analyst launched and included in MBB competencies

5 2014

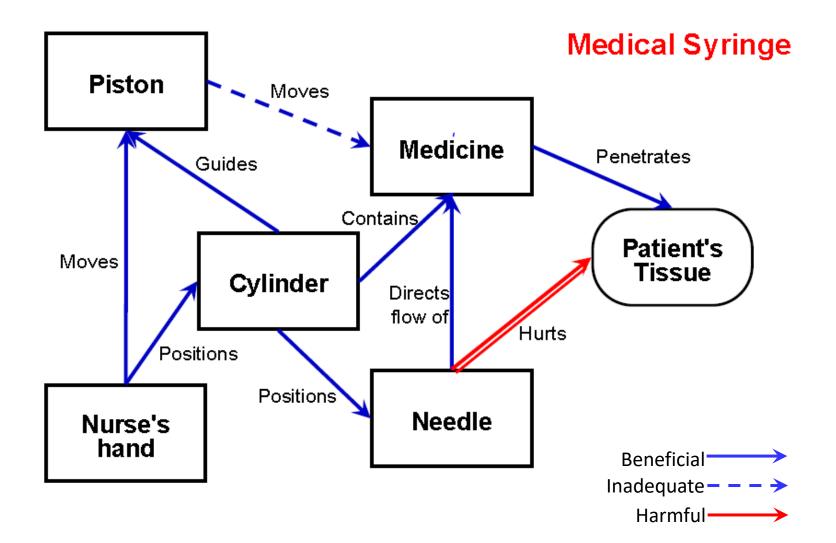
DFSS Black Belt launched for incompany programs 2020

6

Business Analytics Expert, ECIL, Design Thinking, PM Champion launched

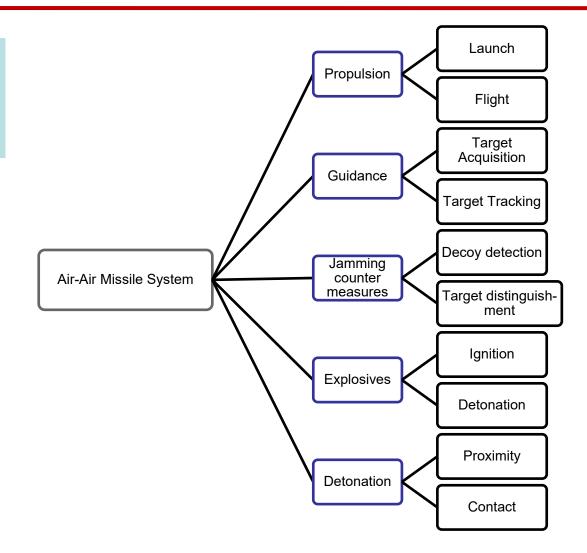


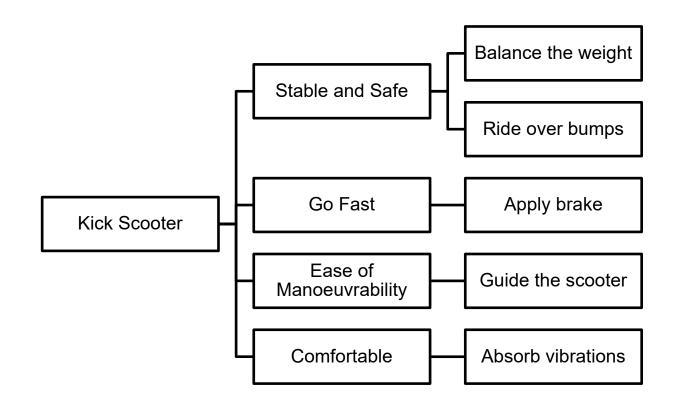
DFSS Black Belt August 2020 V2.0



Introduction	Block 1 - D – MGPP, VOC, Kano, QFD,9 Windows, CIs and KCs, DFSS Scorecard	Block 2 - M – Function Analysis, Function Tree, P diagram, Block Diagram
Block 3 - A - Concept generation and selection, Failure Mode Avoidance	Block 4 - D - Product Design - DRA, DFMEA, Design Records, linking Specs and MSA with SPC	Block 5 - D - Process Design – PFD-PFMEA- Control Plan
Block 6 - D - Experimentation and Reliability – DOE and RSM, Taguchi methods	Block 7 - D - Design advancement using Simulations	Block 8 - V - Product and Process Validation methods

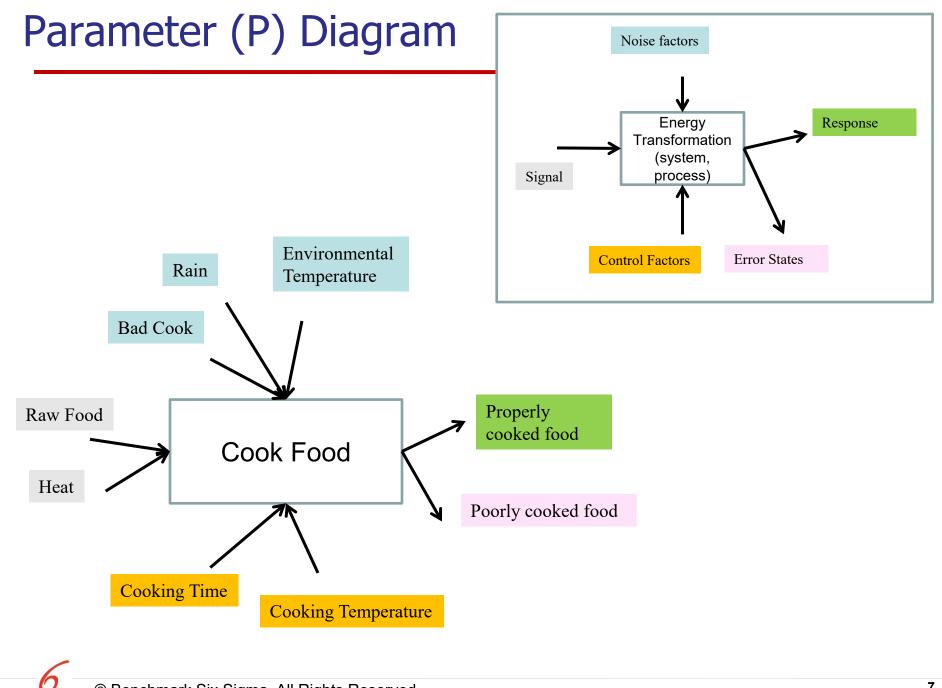
6


Functional Analysis Diagram Example


Function Tree

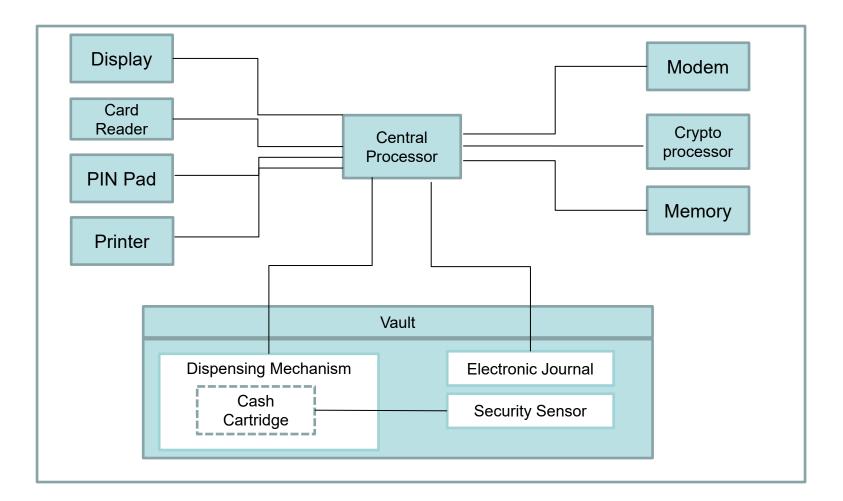
Function tree helps create a preliminary listing of functions and their hierarchy

 \cap

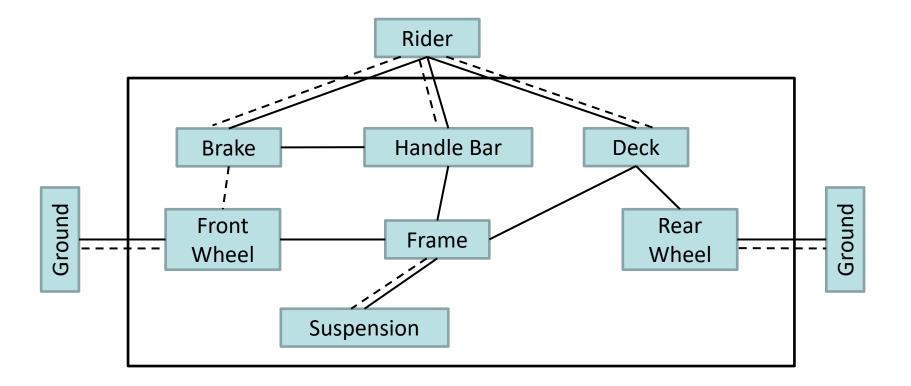


Function Tree

An example function tree is shown here


Is it possible that two design teams create different hierarchies although they are presented with the same first level expectations?

Boundary (Block) Diagram


Example

 \bigcirc

Agreed Block Diagram (Product Design)

Kick Scooter

Physical Connection Energy Transfer	
07	

Team Exercise

- Think of a new process being designed in your organization.
- Prepare one of the following for it
 - Function Analysis Diagram
 - Function Tree
 - P Diagram
 - Block Diagram

Concept Generation and Concept Selection

Failure Mode Avoidance

© Benchmark Six Sigma. All Rights Reserved

1. Refine Functional Requirements Definition

Items To Avoid When Refining Functional Requirements (FRs)

Attribute description like binary (0-1) requirements

• Instead: use ratio scale requirements with defined measurement systems & unit of measurement

Statements of solution ("Design is made of x...")

• Instead: "Design fulfils x..."

Auxiliary verbs like "must" or "have to"

• Instead: "Design needs to be..."

Intangible concepts ("tasty")

Instead: use concrete terms ("add more sugar")

Statements in a non-positive form ("Design does not ...")

Instead: "Design performs x..."

Abstract words such as "reliable" and "durable"

Instead: "design withstands x environmental conditions..."

FRs should be defined in a solution neutral environment

2. Establish function structure

Depth Of Sub Functions

- Theoretically, you can keep dividing into sub-functions until they cannot be sub-divided further this is not practical
- Sub-functions need to be identified to an appropriate level based on needs of project
- All top level function structures can be combined into one overall design function structure.
- If structure Tree is already available, try to extend to the lowest Actionable sub functions !!

Once Function Structure has been established, design parameters (solutions) to those sub-functions must be developed.

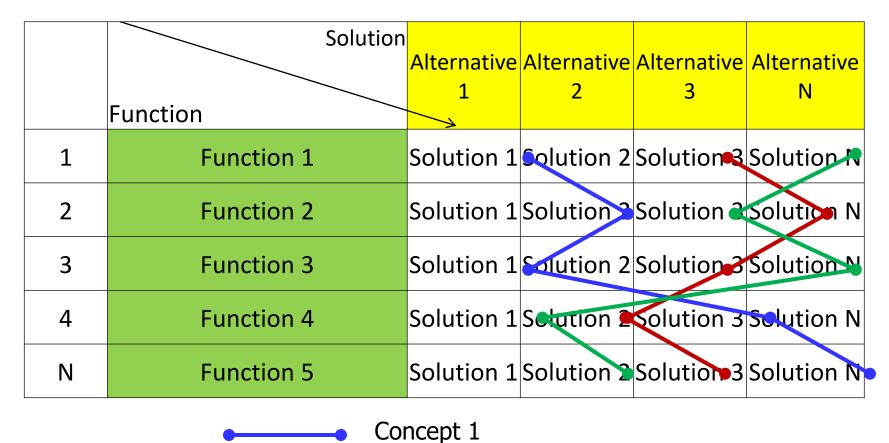
Remember that sub-functions may be further decomposed to form a refined hierarchy

When looking for design parameters ask "How can I fulfil this subfunction?"

- How can I *multiply force*?
- How can I *cut fingernail*?
- How can I enter data?
- How can I reduce friction?

Developing Design Concepts:

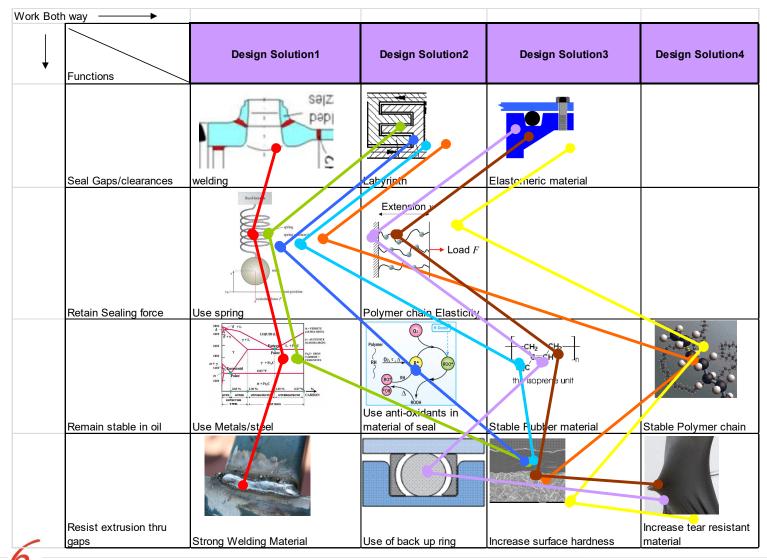
Once you have mapped your customer requirements (CTQs) to product functions you need to generate as many alternate concepts as possible. These concepts in turn will satisfy customer needs.


Later in the process you will narrow down, build on, and combine these ideas into a single solution.

But now you need to generate as many ideas as possible by using:

- Morphological Matrix
- Creativity Tools
- Benchmarking
- Triz
- Brain storming

Creativity Tool: Morphological matrix


A Morphological Matrix is a way to show all functions and corresponding possible design solutions

Concept 2

Concept 3

Creativity Tool: Morphological matrix

© Benchmark Six Sigma. All Rights Reserved

Creativity / Invention Myths

What Picture Do You Have in Your Mind of How Creativity,

Invention or Innovation Occurs?

- Can Creativity/Invention Occur in a Team Environment?
- > What are the Aids to Creativity/Invention in Your Business?
- What are the Barriers to Creativity/Invention in Your Business?

Obstacles for Creative thoughts

Not challenging existing paradigms

The search for the "right" answer

Early childhood and school experiences

Judging ideas before they are formed

Not challenging assumptions

Focusing on logical thought

Staying in our box

Fear of being wrong

Psychological inertia

Look out for killer phrases that start with "That's a good idea, but..." It's against company policy It's not practical It's not necessary We don't have the resources It will cost too much We've never done it that way Our customers (or vendors) won't like it It needs more study It's not part of your job Let's make a survey first Let's sit on it for a while That's not our problem The boss won't go for it The old timers won't use it It's too hard to administer Why hasn't someone else suggested it before? Let's form a committee We should wait until the economy improves Who else has tried it? Is it best practice?

Concept Generation is the creation of numerous ideas that potentially meet Requirements and Specifications.

The context provided by Quantitative Performance Targets (*Requirements and Specifications*) is essential to guide the creation of and provide 'Scope' boundaries for ideas.

The process starts with a thorough understanding of **what** the Function is. The challenge is to create many different design approaches for **how** the Function can be performed.

This transition from *what* to *how* is huge. The amount of information added during conceptual design is enormous.

Draw Morph Matrix to show different solution variants

Principles of Concept Generation

- Concept Generation is a very creative process.
- Creativity Methods and Tools offer enormous value.
- Place an absolute embargo on Selection of Concepts until Generation of Concepts is completely exhausted.
- Pugh cites McGrath's ideas concerning effectiveness of individuals and groups in generating and evaluating ideas.

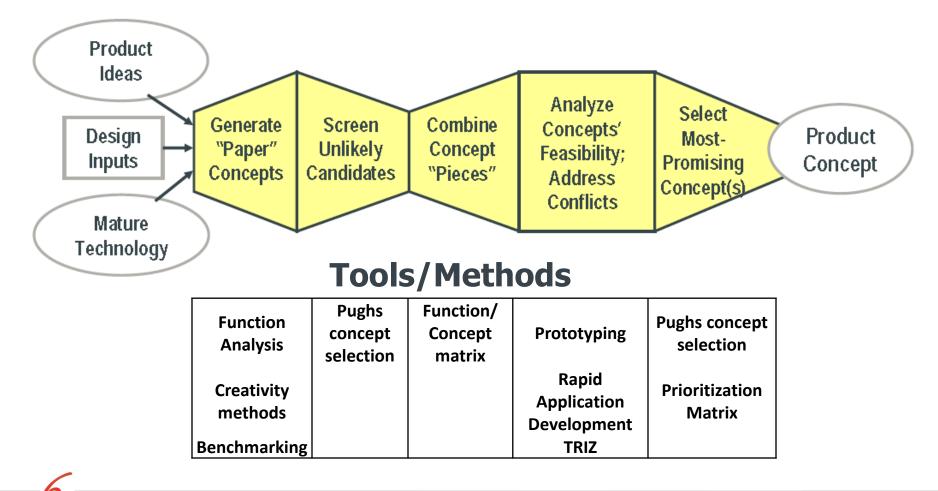
"Concepts are often best generated by individuals".
"Concept Selection and Enhancement is often best performed in groups."

Reference: J. E. McGrath, *Groups: Interaction and Performance*, Prentice Hall, Englewood Cliffs, New Jersey, 1984. **Reference:** Stuart Pugh, *Total Design: Integrated Methods for Successful Product Engineering*, Addison-Wesley Publishing Company, Workingham, England, 1991, p 71.

Three Cycles of Concept Generation

Experience and research suggest that Concept Generation is best performed in

three cycles:

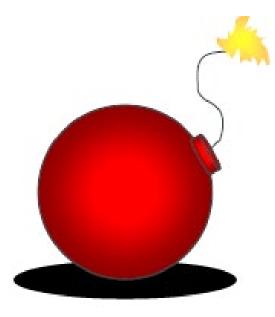

- 1. Groups Gathering information and developing shared purpose
- 2. Individuals Creating ideas
- 3. Groups Combining, enhancing, improving, refining ideas

"Clearly no group can as an entity create ideas. Only individuals can do this. A group of individuals, may, however, stimulate one another in the creation of ideas."

Estill I. Green, VP Bell Labs

Reference: James Martin, *System Engineering Guidebook: A Process for Developing Systems and Products, CRC Press, Boca Raton, 1996, p 257.*

Concept Generation Path: Variation on the "Open/Narrow/Close" Decision-Making Process:



Tools for Concept Generation

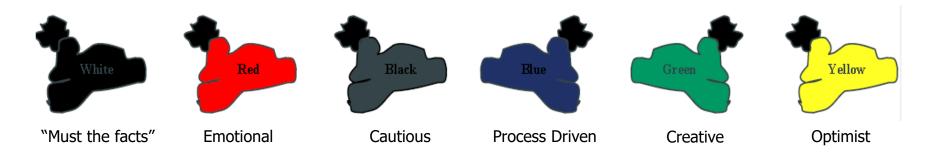
- Brainstorming
- Challenge assumptions
- Solution mapping
- Mind-mapping
- Random word
- Idea box
- Twenty questions
- Candid comments
- Musical chairs
- Building on ideas

Challenge Assumptions

Everyone brings assumptions to the problem-solving table. Such assumptions can reflect what we know or, as is often the case, what we think we know.

- Challenging conventional assumptions about your problem can help you turn obstacles into opportunities
- Work to escape the self-imposed constraints that traditional assumptions often create

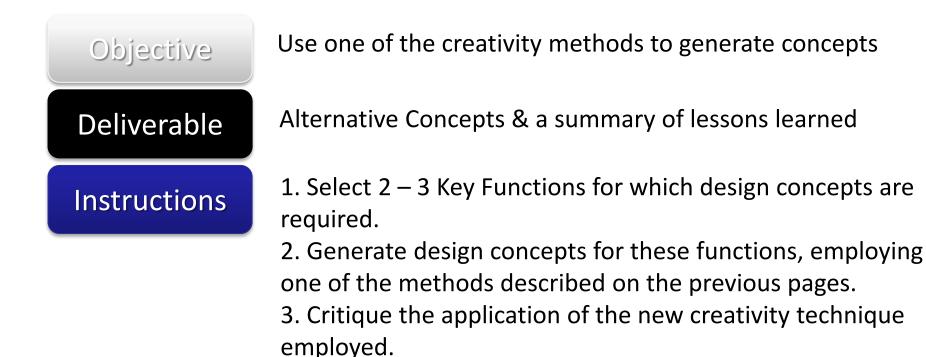
Idea Box: The Idea Box helps you generate concepts for different functions or attributes of your design:


Improve Design for Order Placement System				
S.No	Database	User Platform	Language	Connectivity
1	DB-2	Unix	COBOL	Peer Network
2	Oracle	Windows PC	Fortran	Network Server
3	Ms-Access	Apple PC	C++	Telephone Modem
4	Object	Server Kiosk	Java	Wireless Modem
5	HTML	VT-100	NetFusion	Secure Data Link

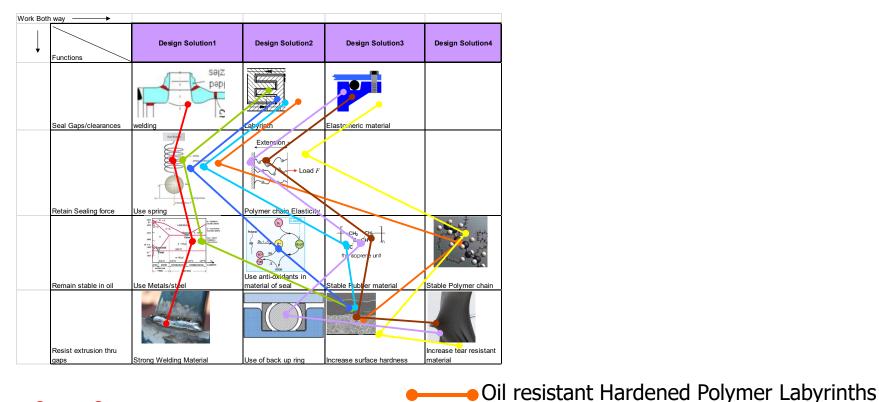
Twenty Questions: Useful to "tear apart" an existing process or service and challenge all current assumptions prior to developing the next generation:

	What?	Where?	When?	Who?	How?
Current	What	Where is it	When is it	Who does	How is it
Method	happens?	done?	done?	it?	done?
Reason			Why do it		Why do it this
	,	there?	then?	1	way?
	Can we do	Can we do it	Can we do it	Can	Can we do it
Better way	something	somewhere	some other	somebody	some other
	else?	else?	time?	else do it?	way?

New ideas: What should we do? Where should it be done? When should it be done? Who should do it? How should it be done?


Six Thinking hats Technique: Another tool that may help the team reach a good decision on the best concept is the Six Thinking Hats Technique.

How to Use the Six Hats Technique


- A thinker puts on or takes off one of the hats
- A facilitator asks a thinker to put on or take off one of the hats
- All thinkers put on one hat for a period of time
- Each thinker is assigned a different hat to wear for a period of time
- All thinkers wear hats they do not "normally" wear

Exercise: Generate Concepts

4. Combine the design solutions to tangible structures

Creativity Tool: Morphological matrix

- Weld the joints
 Metal Labyrinths
 - Metal Labyrinths
- Oil resistant Hardened Rubber Seal with Back u
 Oil & Tear resistant Hardened Rubber Seal
 - Hardened Rubber Labyrinths

- Oil & Tear resistant Hardened Rubber Seal Oil & Tear resistant Hardened Polymer Seal
- Oil resistant Hardened Rubber Labyrinths

5. Select suitable feasible structures

Preliminary Evaluation of Physical Structures

Some concepts will be technically impossible or too costly to implement

- Cost constraints
- Spatial constraints
- Part/process mating problems
- Environmental issues
- Geometric compatibility
- Safety factors
- Environmental factors
- Other design constraints

CAREFUL: You don't want to throw out concepts prematurely. If in doubt, leave in.

6. Firm into solution variants

Objective:

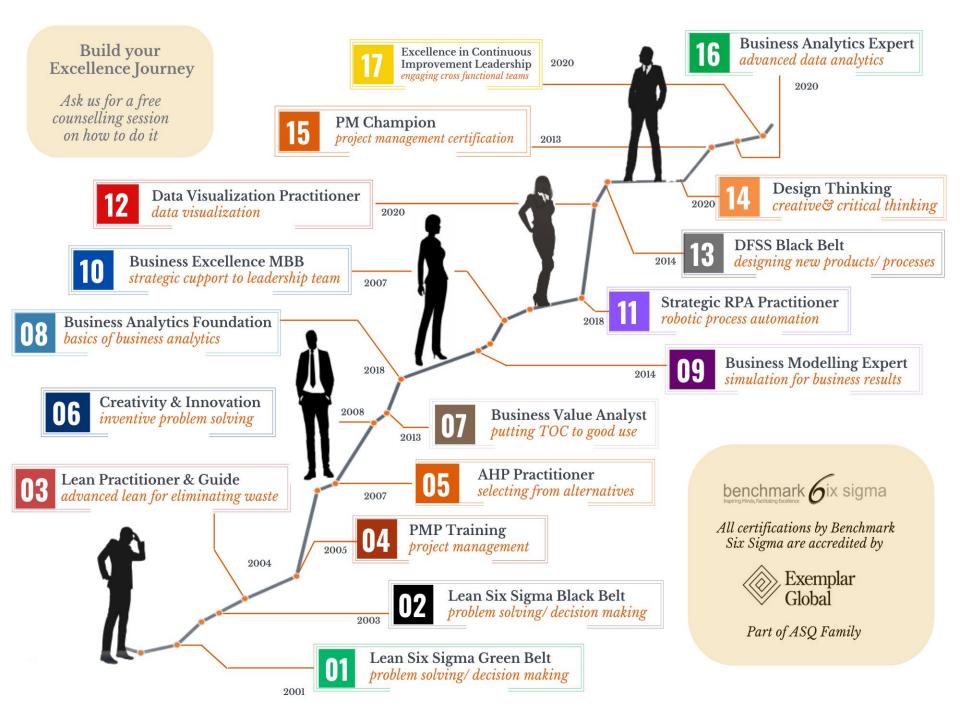
- To assure that the design Solutions selected in the physical structures are weakness free
- Move towards Ideality

Concept Generation and Concept Selection

Failure Mode Avoidance

Failure Mode Avoidance (FMA) Understanding Taxonomy of Failure Modes

What is it?


A structured approach used to identify detect all failure modes in the early design phases helping Design Engineers to successfully fill out FMEA documents from top to bottom. Helps select the right design that will fail the least.

	Failure Mode	Failure Cause	Failure Type
Taxonomy of FailuresNo Function	No light from bulb	Filament burnt	No Function
Partial FunctionDegraded Function	Insufficient light from Bulb	Drop in voltage	Partial Function
 Intermittent Function 	Car starts slowly but engine races	Clutch slippage due to worn out clutch disk	Degraded Function
 Unintended Function 	The bike's light dipper does not work each time	Contact failure due to dimensional design error.	Intermittent Function
	Air bag deployed without collision	EMI emission	Unintended Function

Failure Mode Avoidance – Team Exercise

- Select a service element for which you are considering a design sequence.
- > Carry out FMA for the element and submit your result.

