Question		Answer	Marks	AO	Guidance	
7	(a)	$x=\frac{3}{2}, x=-1$	$\overline{\text { B1 }}$ B1 B1 [3]	1.1 1.1	BC Correct roots Good curve: - Correct shape, symmetrical positive quadratic - FT Minimum point in the correct quadrant for their roots - $\quad \mathrm{FT}$ their x intercepts correctly labelled y intercept at $(0,-3)$	Must have a curve
7	(b)	$x \in\left(-1, \frac{3}{2}\right)$	M1 A1FT [2]	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	Choosing the interval between their x intercepts This interval identified clearly FT their x values in part (i)	Other clear notation is acceptable

| Question | | Answer | Marks | AO | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{7}$ | (c) | | No real roots implies that the discriminant is
 negative
 $b^{2}-4 a c=1^{2}-4 \times 2 \times-(3+k)<0$
 $25+8 k<0$ | | Guidance |

