Ammonium chloride, when dissolved in water, can act as a weak acid as shown by the following equation.

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

Figure 1 shows a graph of data obtained by a student when a solution of sodium hydroxide was added to a solution of ammonium chloride. The pH of the reaction mixture was measured initially and after each addition of the sodium hydroxide solution.

Figure 1

0 6 . 1 Suggest a suitable piece of apparatus that could be used to measure out the sodium hydroxide solution.

Explain why this apparatus is more suitable than a pipette for this purpose.

[2 marks]

Apparatus _____Explanation ____

Barcode Typesetter code

	Use information from the curve in Figure 1 to explain why the end point of thi would be difficult to judge accurately using an indicator.	s reaction [2 marks]
0 6 . 3	The pH at the end point of this reaction is 11.8 Less this pH value and the ionic product of water $(6.74 \text{ m})^{-14}$ meV dm ⁻⁶	40
	Use this pH value and the ionic product of water, $K_{\rm w} = 1.0 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$, calculate the concentration of hydroxide ions at the end point of the reaction.	[3 marks]
	Concentration =	_ mol dm
	Question 6 continues on the next page	

Barcode Typesetter code Turn over

0 6 . 4	The expression for the acid dissociation constant for aqueous ammonium ions is		
	$Ka = \frac{\left[NH^3\right]\left[H^+\right]}{\left[NH_4^{+}\right]}$		
	The initial concentration of the ammonium chloride solution was 2.00 mol dm ⁻³ .		
	Use the pH of this solution, before any sodium hydroxide had been added, to calculate		
	a value for K_a [3 marks]		
	$K_a = \underline{\qquad} \mod dm^{-3}$		
0 6 . 5	A solution contains equal concentrations of ammonia and ammonium ions.		
	Use your value of $K_{\rm a}$ from Question 6.4 to calculate the pH of this solution. Explain your working.		
	(If you were unable to calculate a value for K_a you may assume that it has the value 4.75×10^{-9} mol dm ⁻³ . This is not the correct value.)		
	[2 marks]		
	pH=		