

HKDSE

Unit 14A. Acids

HKDSE Syllabus

a. Introduction to acids and alkalis

04 1	4	1	111	

Students should learn
□ common acids and alkalis in daily life and in the laboratory
□ characteristics and chemical reactions of acids as illustrated by dilute hydrochloric acid and dilute sulphuric acid
□ acidic properties and hydrogen ions (H+(aq))
☐ role of water in exhibiting properties of acid
□ basicity of acid
□ characteristics and chemical reactions of alkalis as illustrated by sodium hydroxide and aqueous ammonia
□ alkaline properties and hydroxide ions (OH-(aq))
□ corrosive nature of concentrated acids and concentrated alkalis
Students should be able to
□ recognise that some household substances are acidic
□ state the common acids found in laboratory
☐ describe the characteristics of acids and their typical reactions
☐ write chemical and ionic equations for the reactions of acids
□ relate acidic properties to the presence of hydrogen ions (H+(aq))
☐ describe the role of water for acids to exhibit their properties
□ state the basicity of different acids such as HCl, H ₂ SO ₄ , H ₃ PO ₄ , CH ₃ COOH
☐ define bases and alkalis in terms of their reactions with acids
□ recognise that some household substances are alkaline
□ state the common alkalis found in the laboratory
☐ describe the characteristics of alkalis and their typical reactions
□ write chemical and ionic equations for the reactions of alkalis
□ relate alkaline properties to the presence of hydroxide ions (OH-(aq))
describe the corrosive nature of acids and alkalis and the safety precautions in handling them

Α.	Domestic	Acids	and	Alkali	S
----	-----------------	--------------	-----	--------	---

is used to test the acidic and alkaline nature of substances.				
1. Acidic substances turns	litmus paper from	to		
2. Alkaline substances turns	litmus paper from	to		
3. substanc	es neither change the colour of red nor	blue litmus paper.		

Substances	Nature	Ingredients
Lemon / orange juice	Acidic / Alkaline / Neutral	
Coca-Cola / Pepsi	Acidic / Alkaline / Neutral	
Sprite / Cream soda	Acidic / Alkaline / Neutral	
Milk of magnesia	Acidic / Alkaline / Neutral	
Washing soda	Acidic / Alkaline / Neutral	
Sugar solution	Acidic / Alkaline / Neutral	
Limewater	Acidic / Alkaline / Neutral	
Vinegar	Acidic / Alkaline / Neutral	
Yogurt	Acidic / Alkaline / Neutral	
Window cleaner	Acidic / Alkaline / Neutral	
Vitamin C	Acidic / Alkaline / Neutral	
Alcohol	Acidic / Alkaline / Neutral	
Blood	Acidic / Alkaline / Neutral	
'Harpic' solution	Acidic / Alkaline / Neutral	
Tea	Acidic / Alkaline / Neutral	
Baking soda	Acidic / Alkaline / Neutral	

Characteristics of Acids
Organic Acids
- Acids containing
- Despite carbon, it also contains the element hydrogen and oxygen .
- Examples: <i>citric acid</i> ($C_6H_8O_7$), <i>ethanoic acid</i> (CH_3COOH)etc.
Inorganic Acids
- Acids that do NOT contain carbon.
- Examples :
(1) Hydrochloric acid ()
(2) Sulphuric acid () &
(3)Nitric acid ()
- They are also called acids.
: they are derived from minerals in the past.
•
ALL pure acids are ionic / covalent compounds as they are made up of non-metal elements
the basic units of pure acids are atoms / ions / molecules.
At room conditions, pure acids can be found in the THREE states:
1. Gas:
2. Liquid:
3. Solid:
In order to show acidic properties, should be added to the pure acids.
Concentration of acid:

acid : small amount of pure acid + large amount of $water$

 $acid: large\ amount\ of\ pure\ acid + small\ amount\ of\ water$

(I) Reaction of Dilute Acids

(1) Metals

	dilute hydrochloric acid magnesium dilute sulphuric acid magnesium magnesium very dilute nitric acid colourless gas collected
	magnesium magnesium collected
(a)	Magnesium reacts with dilute hydrochloric acid():
	Chemical equation :
	Ionic equation :
(b)	Magnesium reacts with dilute sulphuric acid():
	Chemical equation :
	Ionic equation :
(c)	Magnesium reacts with VERY dilute nitric acid ():
	Chemical equation :
	Ionic equation :
0	bservations:
1.	
2.	
3.	
٥.	
	ALL dilute acids contain
*	If calcium or lead reacts with dilute sulphuric acid, the reaction stops quickly due to the formation
	of calcium / lead (II) sulphate.

Acid + Hydrogencarbonates →

(a) Calcium carbonate reacts with dilute hydrochloric acid:

Chemical equati	on:		
Ionic equation:			

(b) Sodium hydrogenearbonate reacts with dilute hydrochloric acid:

Chemical equation:			
Ionic equation:			

Observations:

1.			
2.			

Question: What happens if calcium carbonate is added to dilute sulphuric acid?

(3) Metal oxides

Acid + Metal oxides →

Chemical equation :	
Ionic equation :	
Observations:	
1	
2	

(4) Metal hydroxides

Acid + Metal hydroxides →

Chemical equation :	 	
Ionic equation :	 	
Observations:		
1		
1.		

The above reactions (3)&(4) are called

C. The Role of Water in Acids

Experiment 1

Experiment 2

When hydrogen chloride gas dissolves in (i) water, and (ii) methylbenzene

Equations:

$$HCl(g) + water \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$$

$$HNO_{3(1)}$$
 + water \rightarrow

$$H_2SO_{4(1)}$$
 + water \rightarrow

- There is a change in bonding: ______
- This process is called ______: formation of **IONS** from _____
- H⁺ in aqueous solutions :

Questions:

- 1. Suggest how to distinguish between HCl (g) in water and in methylbenzene.
 - (i) Test them for ______.
 - (ii) Add .
 - (iii) Test them with <u>dry / moist</u> paper.
 - (iv) Add solid / aqueous .
- 2. Explain why an inverted funnel is used.
- :. HCl(g) is very soluble / insoluble in water, the funnel provides a large ______ for the gas to dissolve. (Sucking back can be prevented. Will be discussed in 2012 DSE)

D.	Basicity = the number of	hydrogen atoms in an acid molecule
⊷.	Dusterey the number of	nyarogen atoms in an acta morecure

Basicity	Example				
	acid :				
	acid :				
1	acid :				
	acid :				
	They are called	acids			
	acid :				
2	acid :				
	acid :				
	They are called	acids			
3	acid :				
	It is called	acid.			
* Acids v	with 2 or more ionizable H atoms are called	acids.			
An ACI	An ACID is acontaining compound that gives hydrogen ions ()				