Généralitées sur les fonctions

ENSEMBLE DE DÉFINITION - PARITÉ D'UNE FONCTION

1.1. ENSEMBLE DE DÉFINITION D'UNE FONCTION NUMÉRIQUE

Définition

Soit A une partie de ℝ.

f: A -> B 9e -> f(x)=y

Une fonction f définie d'un ensemble A dans $\mathbb R$ est la donnée pour chaque élément de A d'un unique élément y de $\mathbb R$ appelé image de x. On note alors y=f(x).

L'ensemble A, des nombres réels qui possèdent une image par f, est appelé ensemble de définition de la fonction numérique f. Il est noté traditionnellement D_f .

Remarque

L'ensemble de définition d'une fonction f est la plus grande partie de $\mathbb R$ sur laquelle on peut calculer la valeur de $f(x_0)$ en tout point x_0 de cette partie. On a donc :

$$D_f = \left\{ x \in \mathbb{R} \, / \, f(x) \in \mathbb{R} \right\}$$

En pratique, on utilise souvent l'équivalence : $x \in D_f \Leftrightarrow (x \in \mathbb{R} \text{ et } f(x) \in \mathbb{R})$

Exemples

1) L'ensemble de définition de la fonction f définie par $f(x) = x^3 - 5x^2 + 4x - \sqrt{2}$:

2) L'ensemble de définition de la fonction g définie par $g(x) = \frac{5x+1}{x^2-3x+2}$:

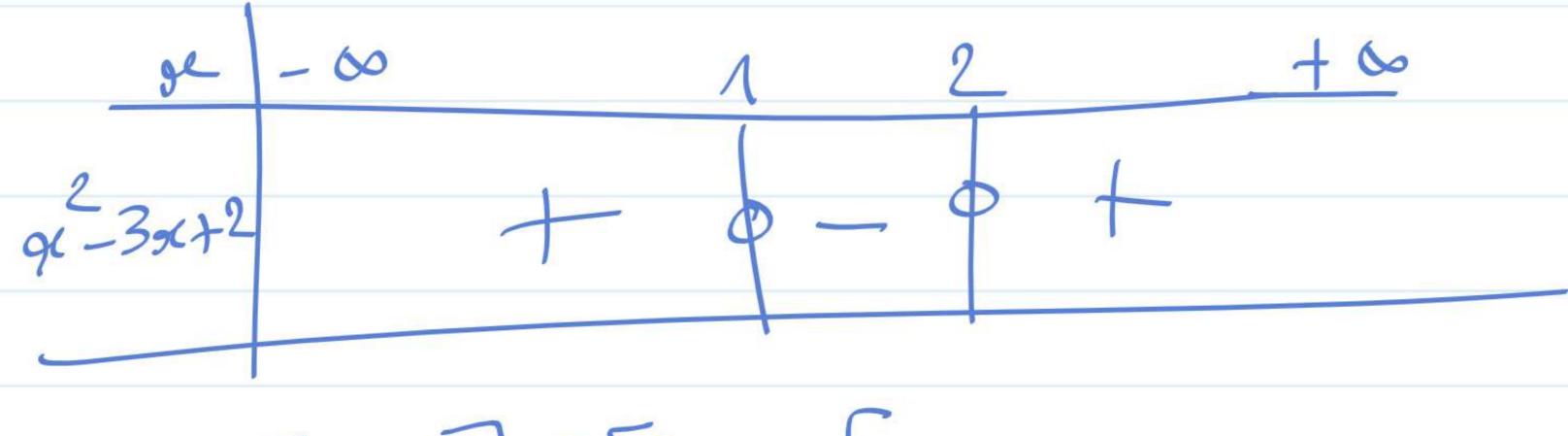
Résolvons l'équation: $92^2 - 392 + 2 = 6$ $(\Delta = 9 - 4 \times 1 \times 2 = 9 - 9 = 1 > 0)$

$$(-3) = \frac{3-\sqrt{1}}{2} = \frac{3+\sqrt{1}}{2}$$

Dg= fre th/ r=1 et r=23

3) L'ensemble de définition de la fonction h définie par $h(x) = \sqrt{x^2 - 3x + 2}$:

Résolvons Pinéquation g2-39e+2>0



4) L'ensemble de définition de la fonction k définie par $k(x) = \sqrt{x-3} + \frac{1}{x-5}$:

Applications

Déterminer l'ensemble de définition de la fonction f dans chacun des cas suivants :

1)
$$f(x) = \frac{x+1}{2x^2 - x - 1}$$

2)
$$f(x) = \sqrt{\frac{x-1}{x^2 - 5x - 6}}$$

1)
$$f(x) = \frac{x+1}{2x^2 - x - 1}$$
 ; 2) $f(x) = \sqrt{\frac{x-1}{x^2 - 5x - 6}}$; 3) $f(x) = \frac{\sqrt{x-1}}{\sqrt{x^2 - 5x - 6}}$

4)
$$f(x) = \frac{1 - \sqrt{x}}{2|x| - 1}$$

5)
$$f(x) = \frac{\tan x}{\cos x - 1}$$

4)
$$f(x) = \frac{1 - \sqrt{x}}{2|x| - 1}$$
; 5) $f(x) = \frac{\tan x}{\cos x - 1}$; 6) $f(x) = \frac{\sqrt{x}}{\sin^2 x + \sin x - 2}$

1/
$$\int (x) = \frac{x+1}{2x-x-1}$$

DJ = $\int x = \frac{x+1}{2x-x-1}$

Resoulvent Déquation:
 $2x^2 - x - 1 = 0$

D= 1 - h. e. A

= 1 + 8

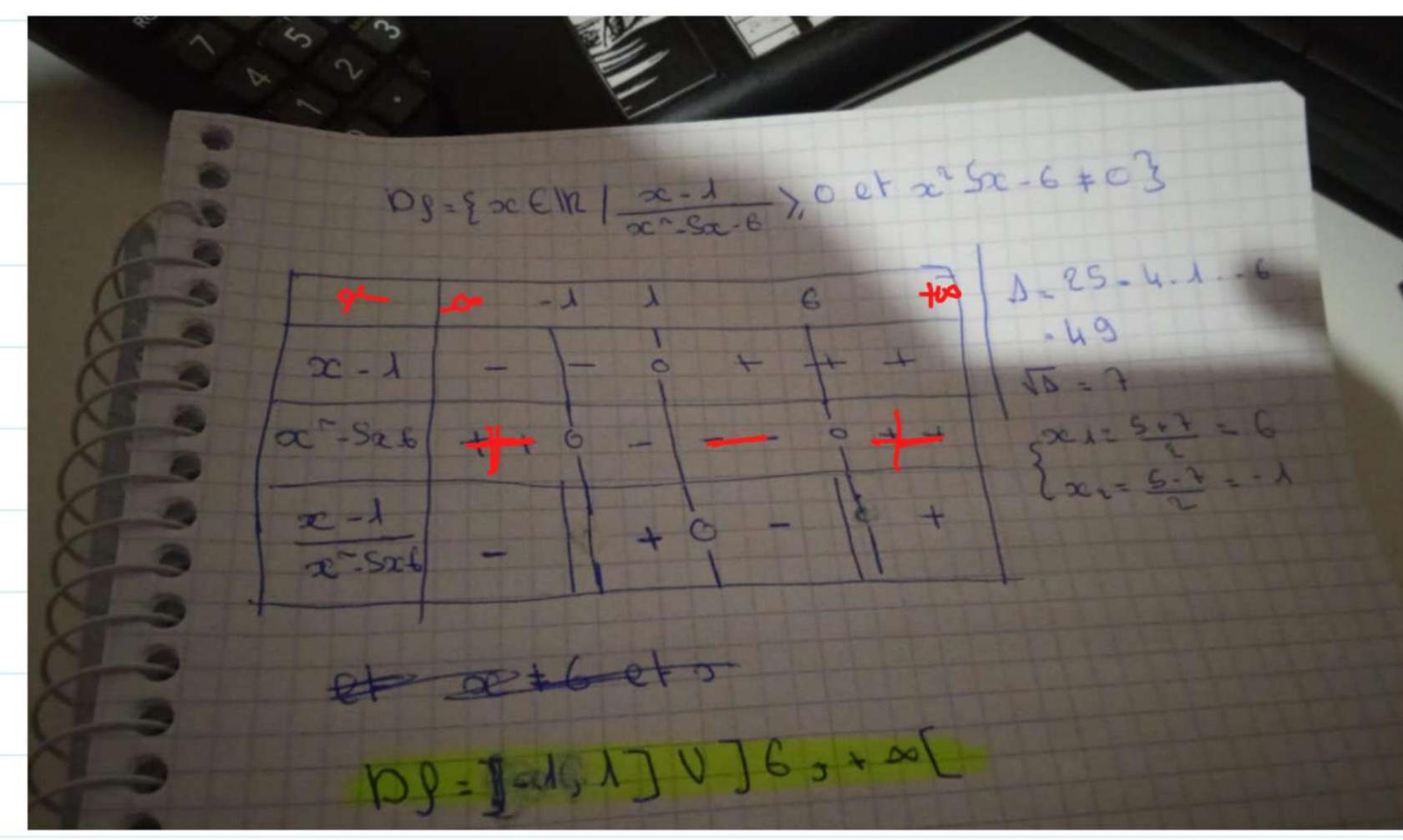
 $\begin{cases} x_1 = \frac{1-3}{4} = -\frac{1}{4} \\ x_2 = \frac{1}{4} = -\frac{1}{4} \end{cases}$

DJ = $\begin{cases} x_1 = \frac{1-3}{4} = -\frac{1}{4} \\ x_2 = \frac{1}{4} = -\frac{1}{4} \end{cases}$

DJ = $\begin{cases} x_1 = \frac{1-3}{4} = -\frac{1}{4} \\ x_2 = \frac{1}{4} = -\frac{1}{4} \end{cases}$

DJ = $\begin{cases} x_1 = \frac{1-3}{4} = -\frac{1}{4} \\ x_2 = \frac{1}{4} = -\frac{1}{4} \end{cases}$

DJ = $\begin{cases} x_1 = \frac{1}{4} - \frac{1}{4} \\ x_2 = \frac{1}{4} = -\frac{1}{4} \end{cases}$



3)
$$f(x) = \frac{\sqrt{x-1}}{\sqrt{x^2-5x-6}}$$

$$= \int_{0}^{2\pi} \left[\frac{g(x)}{g(x)} + \frac{g(x)}{g(x)} \right] dx$$

$$= \int_{0}^{2\pi} \frac{g(x)}{g(x)} dx$$

$$= \int_{0}^{2\pi} \frac{g(x)}{g(x)} dx$$

4)
$$f(x) = \frac{1-\sqrt{x}}{2|x|-1}$$
 $P = \left\{ y \in \mathbb{R} / y \right\} \text{ o et } 2|x|-1 \neq 0 \right\}$
 $= \left\{ y \in \mathbb{R} / y \right\} \text{ o et } \left\{ y \neq \frac{1}{2} \right\}$
 $= \left\{ y \in \mathbb{R} / y \right\} \text{ o et } \left\{ y \neq \frac{1}{2} \right\}$
 $= \left\{ y \in \mathbb{R} / y \right\} \text{ o et } \left\{ y \neq \frac{1}{2} \right\}$
 $= \left\{ y \in \mathbb{R} / y \right\} \text{ o et } \left\{ y \neq \frac{1}{2} \right\}$
 $= \left\{ y \in \mathbb{R} / y \right\} \text{ o et } \left\{ y \neq \frac{1}{2} \right\}$
 $= \left\{ y \in \mathbb{R} / y \right\} \text{ o et } \left\{ y \neq \frac{1}{2} \right\}$

5)
$$f(x) = \frac{\tan x}{\cos x - 1}$$
 Pf: $\frac{1}{\sqrt{\cos x}} = \frac{\tan x}{\cos x - 1}$ Pf: $\frac{1}{\sqrt{\cos x}} = \frac{1}{\sqrt{\cos x$

 $DS = \{ x \in \mathbb{R} / \cos x - 1 \neq 0 \text{ et } x \neq \mathbb{T} + k \text{ it } | k \in \mathbb{Z} \}$ resoule vent l'équation: cos x = 1 cos x = cos (o) $x = 2k \text{ it } | k \in \mathbb{Z}$ $DS = \{ x \in \mathbb{R} | x \neq 2k \text{ it } et x \neq \mathbb{T} + k \text{ it } | k \in \mathbb{Z} \}$ $DS = \{ x \in \mathbb{R} | x \neq 2k \text{ it } et x \neq \mathbb{T} + k \text{ it } | k \in \mathbb{Z} \}$ $DS = \{ x \in \mathbb{R} | x \neq 2k \text{ it } et x \neq \mathbb{T} + k \text{ it } | k \in \mathbb{Z} \}$

6)
$$f(x) = \frac{\sqrt{x}}{\sin^2 x + \sin x - 2}$$

Résulvons l'équation Singe + Singe - 2 = 0 (E)

$$Sim \Rightarrow P - Sim \left(\frac{T}{2}\right)$$

$$\Rightarrow \qquad P = \frac{T}{2} + \frac{2kT}{2} + \frac{2kC}{2}$$

Smye=Sina
91=a+2kT
ou

$$9=II-a+2kT$$

 $(a \neq II)$

1.2. PARITÉ D'UNE FONCTION NUMÉRIQUE

Définition

Soit f une fonction numérique et D_f son ensemble de définition.

- On dit que la fonction f est paire si pour tout $x \in D_f$: $-x \in D_f$ et f(-x) = f(x).
- On dit que la fonction f est impaire si pour tout $x \in D_f$: $-x \in D_f$ et f(-x) = -f(x).

Exemples

1) Les fonctions suivantes :

$$f_1: \mathbb{R} \to \mathbb{R}$$
 $f_2: \mathbb{R} \to \mathbb{R}$ $f_3: \mathbb{R}^* \to \mathbb{R}$ $f_4: \mathbb{R} \to \mathbb{R}$ $x \mapsto 3x^2$; $x \mapsto 2|x|-3$; $x \mapsto x^2 - \frac{3}{x^2}$; $x \mapsto \cos x$

sont des fonctions paires.

2) Les fonctions suivantes :

$$g_1: \mathbb{R} \to \mathbb{R} \qquad ; \qquad g_2: \mathbb{R} \to \mathbb{R} \qquad ; \qquad g_3: \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\to \mathbb{R} \qquad ; \qquad g_4: \left] -1; 1 \right[\to \mathbb{R}$$

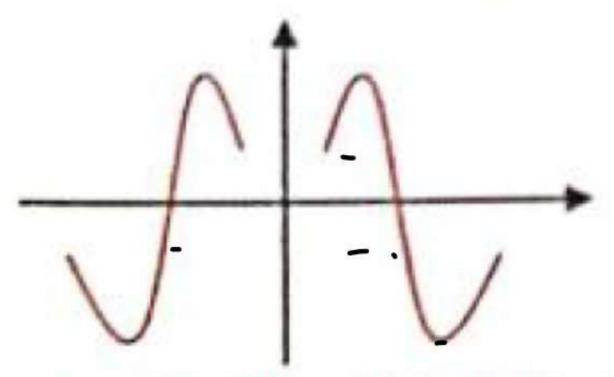
$$x \mapsto -5x \qquad ; \qquad x \mapsto \frac{1}{2}x^3 \qquad ; \qquad x \mapsto \sin x - \tan x \qquad ; \qquad x \mapsto \frac{x^3}{\sqrt{1-x^2}}$$

sont des fonctions impaires.

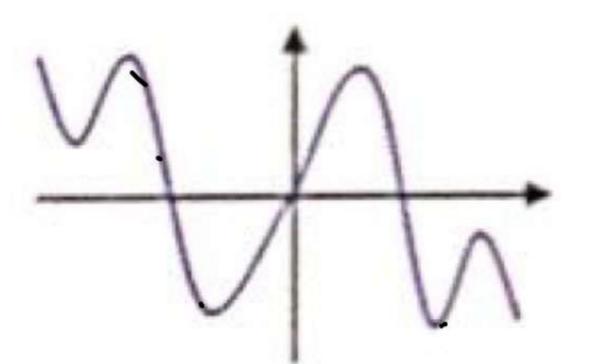
Proposition

Si f est une fonction paire, alors l'axe des ordonnées est un axe de symétrie de sa courbe 🐔 ...

Si f est une fonction impaire, alors l'origine du repère est un centre de symétrie de sa courbe 🚭 ...



Graphe d'une fonction paire



Graphe d'une fonction impaire

Applications

Étudier la parité de la fonction f dans chacun des cas suivants :

1)
$$f(x) = \frac{3x}{x^2 + 1}$$

2)
$$f(x) = \frac{x^2 - 1}{\sqrt{4 - x^2}}$$

3)
$$f(x) = x^3 - x^2 + 1$$

4)
$$f(x) = \frac{\sin x}{2\cos x - 1}$$

; 5)
$$f(x) = \frac{x^4}{x^3 - 1}$$

In pair miling

; 6)
$$f(x) = \frac{|x|}{x^4 + 1}$$

paire V

Solution:

$$\frac{3(-9)}{(-9)^2+1} = \frac{3(-9)}{(-9)^2+1} = -\frac{3}{9} = -\frac{1}{9} =$$

Alors fect impaire.

$$\int (-y)^{2} = \frac{(-y)^{2}-1}{(n-(-y)^{2})^{2}} = \frac{y^{2}-1}{(n-(-y)^{2})^{2}} = \int (y)^{2}$$
Alon $\int ext punv$.

$$3) f(x) = x^{2}-x^{2}+1 \qquad Df = [R],$$

$$V(x) = \frac{1}{2\cos x-1}$$

$$D_{x} = \frac{\sin x}{2\cos x-1}$$

$$D_{y} = \frac{1}{2}xe \frac{1}{8} / \frac{2\cos x-1}{2\cos x-1} + \frac{1}{2} = \frac{1}{2}xe \frac{1}{8} / \frac{2x}{2} + \frac{2x}{2} +$$

Alans: fect impaire.

MONOTONIE D'UNE FONCTION NUMÉRIQUE

2.1. SENS DE VARIATIONS D'UNE FONCTION (RAPPELS)

Définition

Soit f une fonction numérique définie sur un intervalle I inclus dans son ensemble de définition.

On dit que la fonction f est croissante sur I si:

$$(\forall (x_1; x_2) \in I^2)$$
 $(x_1 < x_2 \Rightarrow f(x_1) \le f(x_2))$

On dit que la fonction f est strictement croissante sur I si :

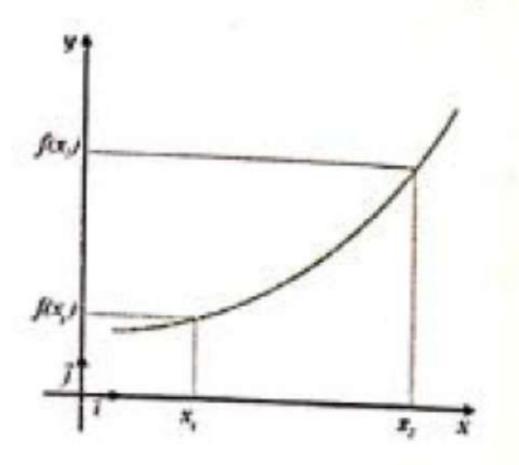
$$(\forall (x_1; x_2) \in I^2)$$
 $(x_1 < x_2 \Rightarrow f(x_1) < f(x_2))$

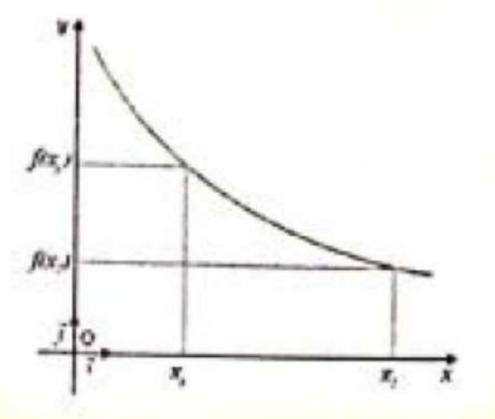
On dit que la fonction f est décroissante sur I si :

$$(\forall (x_1; x_2) \in I^2) (x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2))$$

ullet On dit que la fonction f est strictement décroissante sur I si :

$$(\forall (x_1; x_2) \in I^2)$$
 $(x_1 < x_2 \Rightarrow f(x_1) > f(x_2))$





Proposition

Soit f une fonction numérique définie sur un intervalle I , $x_{\rm l}$ et $x_{\rm 2}$ deux éléments distincts de I .

Le nombre $T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$ est appelé le taux de variation (ou d'accroissement) de la

fonction f entre x_1 et x_2 . De plus, on a les propriétés suivantes :

- f est croissante sur I si, et seulement si : $(\forall (x_1; x_2) \in I^2) : x_1 \neq x_2 \Rightarrow T(x_1; x_2) \geq 0$.
- f est strictement croissante sur I si, et seulement si : $(\forall (x_1; x_2) \in I^2) : x_1 \neq x_2 \Rightarrow T(x_1; x_2) > 0$.
- f est décroissante sur I si, et seulement si : $(\forall (x_1; x_2) \in I^2) : x_1 \neq x_2 \Rightarrow T(x_1; x_2) \leq 0$.
- f est strictement décroissante sur I si, et seulement si : $(\forall (x_1; x_2) \in I^2) : x_1 \neq x_2 \Rightarrow T(x_1; x_2) < 0$.

Exemple

1)
$$f(x) = \sqrt{9x^3 - 1}$$
 $p_0 = [1; +10]$

Soit $y_1, y_1 \in [1; +10]$,

 $x(y_1) = y_1^3 < y_1^3 = y_2^3 - 1 < y_1^3 - 1$
 $y_1^3 = y_2^3 - 1 < y_2^3 - 1$
 $y_2^3 = y_3^3 - 1 < y_3^3 - 1$

July for $y_1^3 = y_2^3 - 1 < y_3^3 - 1$

July for $y_1^3 = y_2^3 - 1 < y_3^3 - 1$

July for $y_1^3 = y_2^3 - 1 < y_3^3 - 1$

2)

On considère la fonction numérique f définie sur \mathbb{R}^+ par : $f(x) = \frac{x}{x^3 + 16}$.

Si x1ye [2;100 [=> sey]h ot sty] h => sey [x+y] >> lb => - sey [x+y] + 16 <> 0 => + (a,n) <> n

of ev diawisanie for [2;+x)[,

2.2. MONOTONIE ET PARITÉ

Proposition

Soit f une fonction numérique d'ensemble de définition D_f symétrique par rapport à 0 (c'est-à-dire que pour tout $x \in D_f$: $-x \in D_f$).

Pour tout intervalle I inclus dans $\mathbb{R}^+ \cap D_f$, on pose : $I' = \{-x/x \in I\}$. Alors :

- ullet Si la fonction f est paire, alors les sens de monotonie sur I et I' sont opposés.
- ullet Si la fonction f est impaire, alors les sens de monotonie sur I et I' sont identiques.

Exemples

1) On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = x^2 + 4|x|$.

On montre facilement que la fonction f est croissante sur \mathbb{R}^+ .

Puisque la fonction f est paire, alors elle est décroissante sur \mathbb{R}^- .

2) On considère la fonction numérique g définie sur \mathbb{R} par : $g(x) = \frac{x}{x^2 + 1}$.

On montre facilement que la fonction g est croissante sur [0;1] et décroissante sur $[1;+\infty[$.

Puisque g est impaire, alors elle est croissante sur [-1;0] et décroissante sur $]-\infty;-1]$.

Applications

- 1. Soit f la fonction numérique définie sur R' par: $f(x) = x + \frac{2}{x}$.
 - a) Étudier la parité de la fonction f.
- b) Étudier la monotonie de la fonction f sur chacun des intervalles $]0;\sqrt{2}]$ et $[\sqrt{2};+\infty[$.
- c) En déduire la monotonie de la fonction f sur chacun des intervalles $\left[-\sqrt{2};0\right]$ et $\left[-\infty;-\sqrt{2}\right]$.

DS=
$$\{x \in R \mid x \neq 0\}$$

 $b = R^*$
Alors: $\forall x \in DS : -x \in DS$
 $S(-\infty) = -x + \frac{2}{x}$
 $= -(x + \frac{2}{x})$
 $= -3(x)$
donc $S \in St \text{ impaire}$

b) Étudier la monotonie de la fonction f sur chacun des intervalles $]0;\sqrt{2}]$ et $[\sqrt{2};+\infty[$.

Soit
$$y, y \in \mathbb{D}_{q}$$
 $(y, y) = \frac{1}{2}(y) - \frac{1}{2}(y) = \frac{1}{2}(y) + \frac{1}{2}(y) + \frac{1}{2}(y) = \frac{1}{2}(y) + \frac{1}{2}(y) + \frac{1}{2}(y) = \frac{1}{2}(y)$

8' 9, y c Jo, \si2 _ 5 o\ a \langle \si2 et \langle \gamma\langle \langle \langle \langle \gamma\langle \langle \gamma\langle \g

2 y (91 -y)

So
$$y, y \in [7, +\infty)$$
 $y \in [7, +\infty)$ $y \in [7,$

on pose
$$T = [R_1 \cap D_1] = J_{0,1} + \infty[$$

for impure aloss la monotonie on $I' = J_{-0} / \infty \in I$ est la méme que on I .

Alos for at dissolutionale on $[-\sqrt{2}] \circ [$

et for at animale on $[-\sqrt{2}] \circ [$

COMPARAISON DE DEUX FONCTIONS NUMÉRIQUES

3.1. FONCTION POSITIVE - FONCTION NÉGATIVE

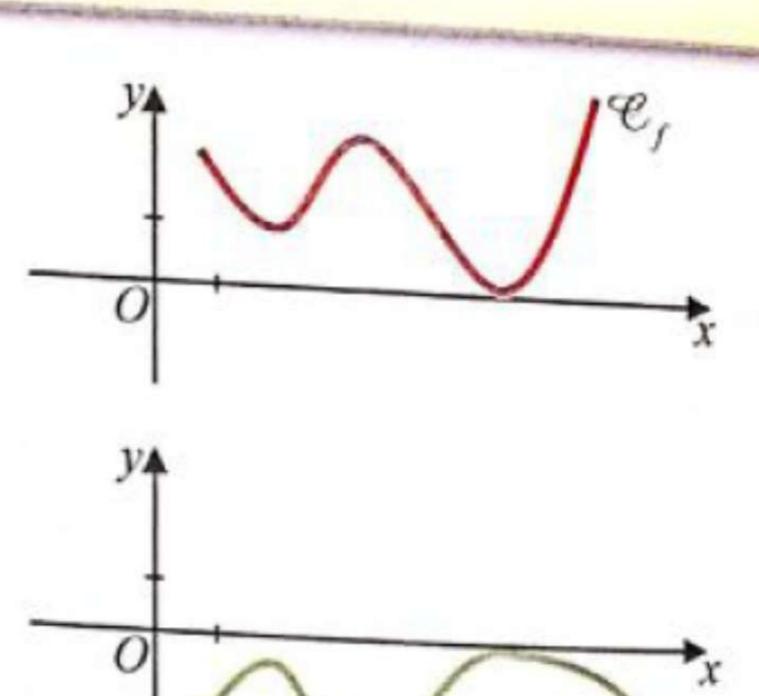
Définition

Soit f une fonction numérique et D_f son ensemble de définition.

- On dit que la fonction f est positive sur D_f si : $(\forall x \in D_f) f(x) \ge 0$. et on écrit : $f \ge 0$.
- On dit que la fonction f est négative sur D_f si : $\left(\forall x \in D_f \right) f(x) \le 0$. et on écrit : $f \le 0$.

INTERPRÉTATION GRAPHIQUE

- Dire que la fonction f est positive sur D_f équivaut à dire que sa courbe représentative \mathscr{C}_f est au-dessus de l'axe des abscisses.
- Dire que la fonction f est négative sur D_f équivaut à dire que sa courbe représentative \mathscr{C}_f est en-dessous de l'axe des abscisses.



On considère la fonction numérique f définie par : $f(x) = \frac{4-x^2}{2x-3}$.

Étudions le signe de la fonction f sur $D_f = \mathbb{R} - \left\{ \frac{3}{2} \right\}$:

$$4 - 4^2 = 0$$
 4 $96^2 = 4$ 4 $96 = 2$ on $96 = -2$ $96 = 3/2$

$$\frac{34}{29-3}$$
 $\frac{-2}{2}$ $\frac{3}{2}$ $\frac{2}{2}$ $\frac{+6}{2}$ $\frac{-2}{2}$ $\frac{3}{2}$ $\frac{2}{2}$ $\frac{+6}{2}$ $\frac{-2}{2}$ $\frac{3}{2}$ $\frac{2}{2}$ $\frac{-2}{2}$ $\frac{2}$ $\frac{-2}{2}$ $\frac{-2}{2}$ $\frac{-2}{2}$ $\frac{-2}{2}$ $\frac{-2}{2}$ $\frac{-2}$

3.2. COMPARAISON DE DEUX FONCTIONS NUMÉRIQUES

Définition

Soit f et g deux fonctions numériques définies sur un même ensemble D.

On dit que f est inférieure ou égale à g sur D (ou que g est supérieure ou égale à f sur D) si :

$$(\forall x \in D)$$
 $f(x) \le g(x)$

et on écrit : $f \le g \operatorname{sur} D$.

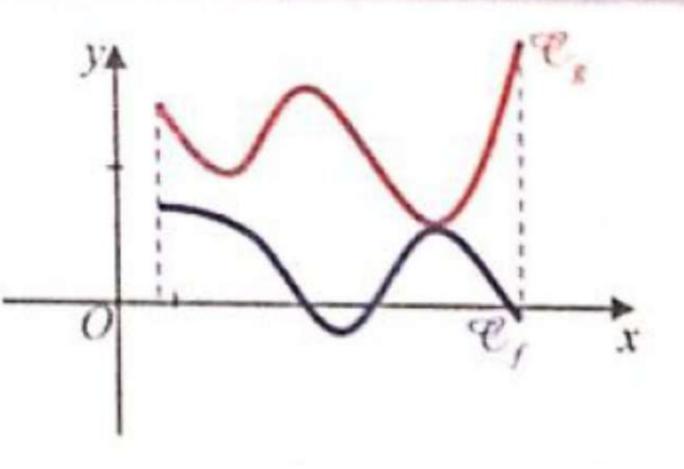
INTERPRÉTATION GRAPHIQUE

Dire que la fonction f est inférieure ou égale à g sur D

équivaut à dire que la courbe représentative & est

en-dessous de la courbe représentative \mathscr{C}_x pour tout $x \in D$.

Remarquer bien que: $f \leq g \Leftrightarrow (g - f est positive)$.



Exemples

1) On considère les fonctions f et g définies sur \mathbb{R} par : $g(x) = x^2 + x + 2$ et f(x) = x + 1.

Comparons les fonctions f et g:

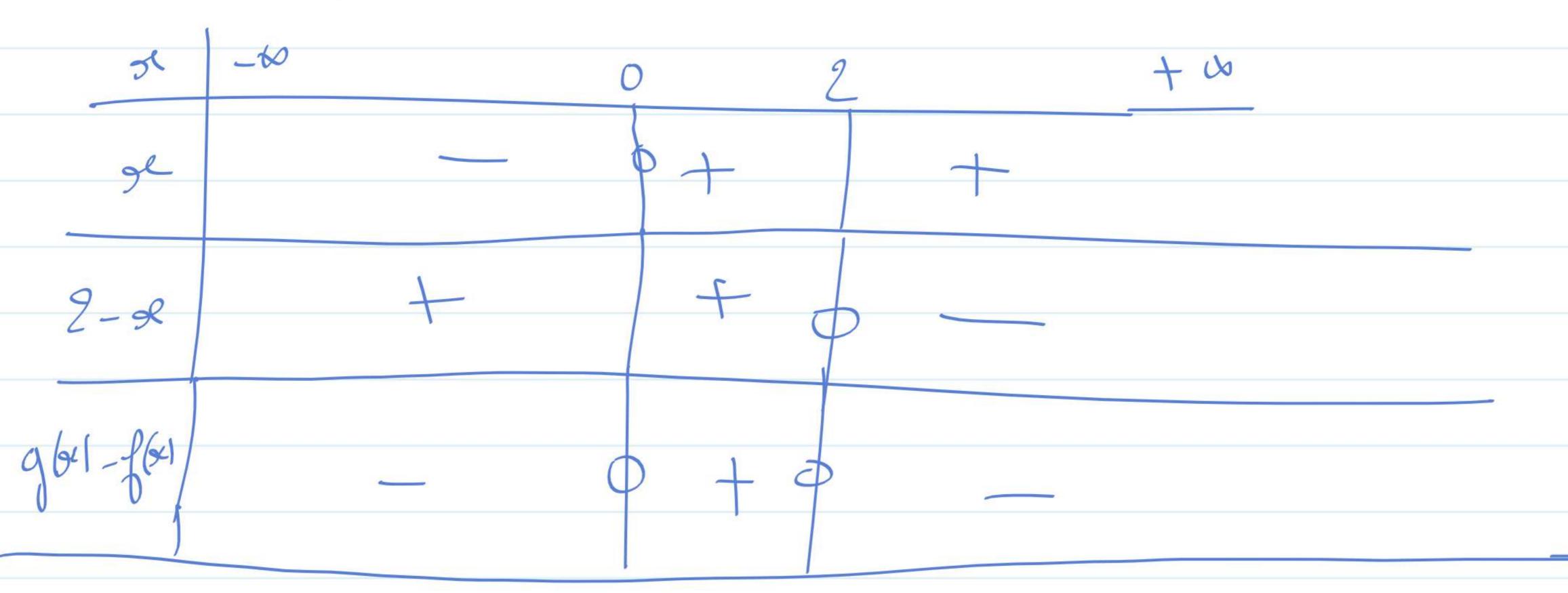
On a pour tout $x \in \mathbb{R}$: $g(x) - f(x) = (x^2 + x + 2) - (x + 1) = x^2 + 1$.

Comme $x^2 + 1 \ge 0$, alors $f(x) \le g(x)$; d'où: $f \le g$.

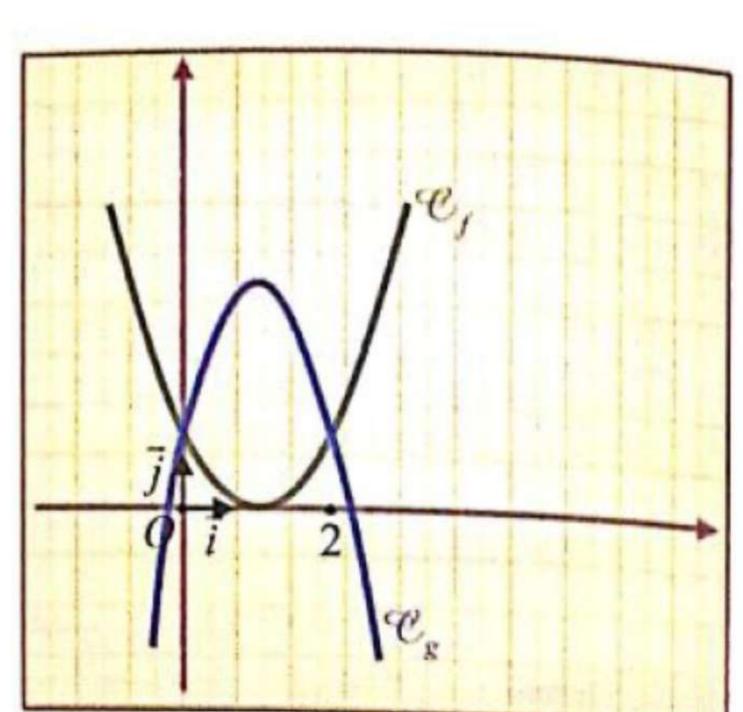
2) On considère les fonctions f et g définies sur \mathbb{R} par : $f(x) = (x-1)^2$ et $g(x) = -2x^2 + 4x - 1$.

Comparons les fonctions f et g :

On a pour tout $x \in \mathbb{R}$: $g(x) - f(x) = -3x^2 + 6x = 3x(2-x)$



x	-∞	0	2 +∞
g(x)-f(x)	-	+	_
position de \mathscr{C}_{g} par rapport à \mathscr{C}_{f}	en-dessous de €,	€ est au-dessus de €	€ _g est en-dessous de €,



En résumé :

- f ≥ g sur la réunion des intervalles [2;+∞[et]-∞;0];
- $f \le g \text{ sur l'intervalle } [0;2].$

Applications

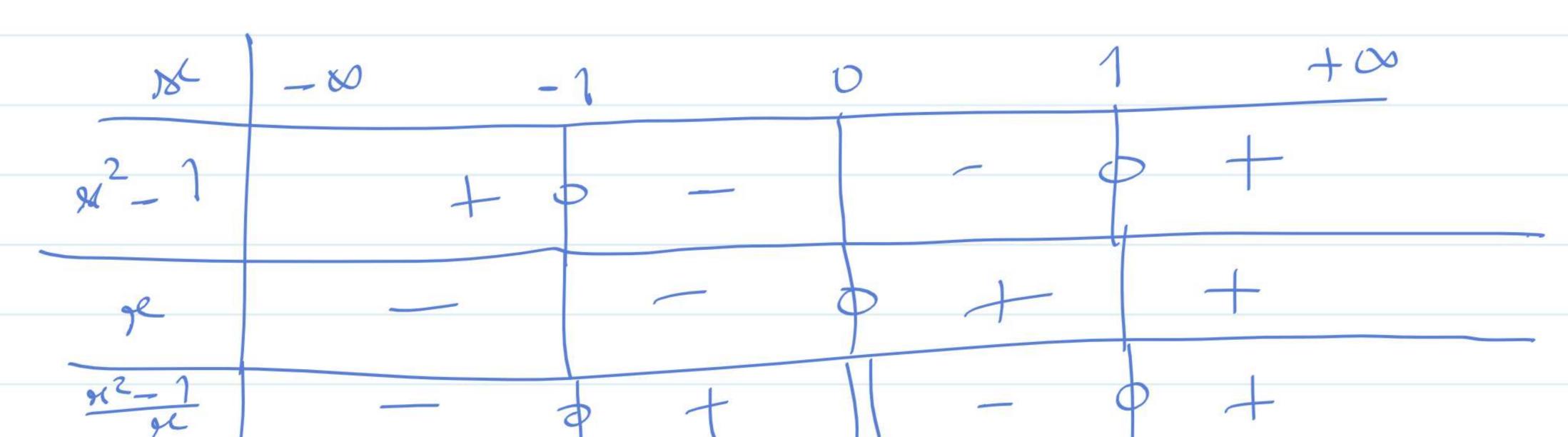
Comparer les fonctions f et g dans chacun des cas suivants :

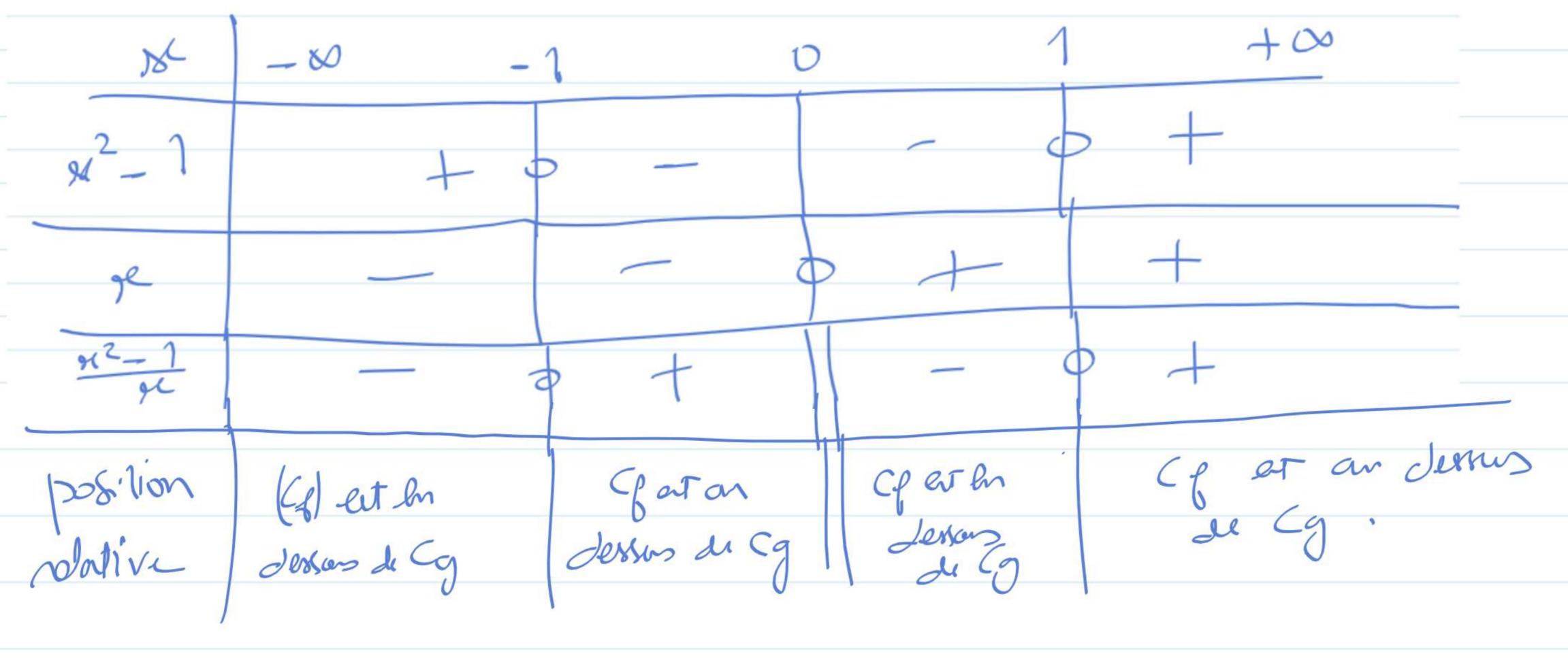
- 1) f(x) = x et $g(x) = \frac{1}{x}$
- 3) $f(x) = \frac{1+2x}{1+4x}$ et $g(x) = \frac{1-4x}{1-2x}$; 4) $f(x) = \sqrt{x^2+4}$ et g(x) = x+2

Salution:

Soit ge
$$\leq \mathbb{R}^*$$
, $f(M-g(M)) = M - \frac{1}{\alpha} = \frac{91^2 - 1}{91}$

$$g(^{2}, 1=0)$$
 $g(^{2}, 1=0)$ $g(^{2}, 1=0)$ $g(^{2}, 1=0)$ $g(^{2}, 1=0)$ $g(^{2}, 1=0)$ $g(^{2}, 1=0)$





2)
$$f(x) = \frac{x}{x+1}$$
 et $g(x) = x^2$

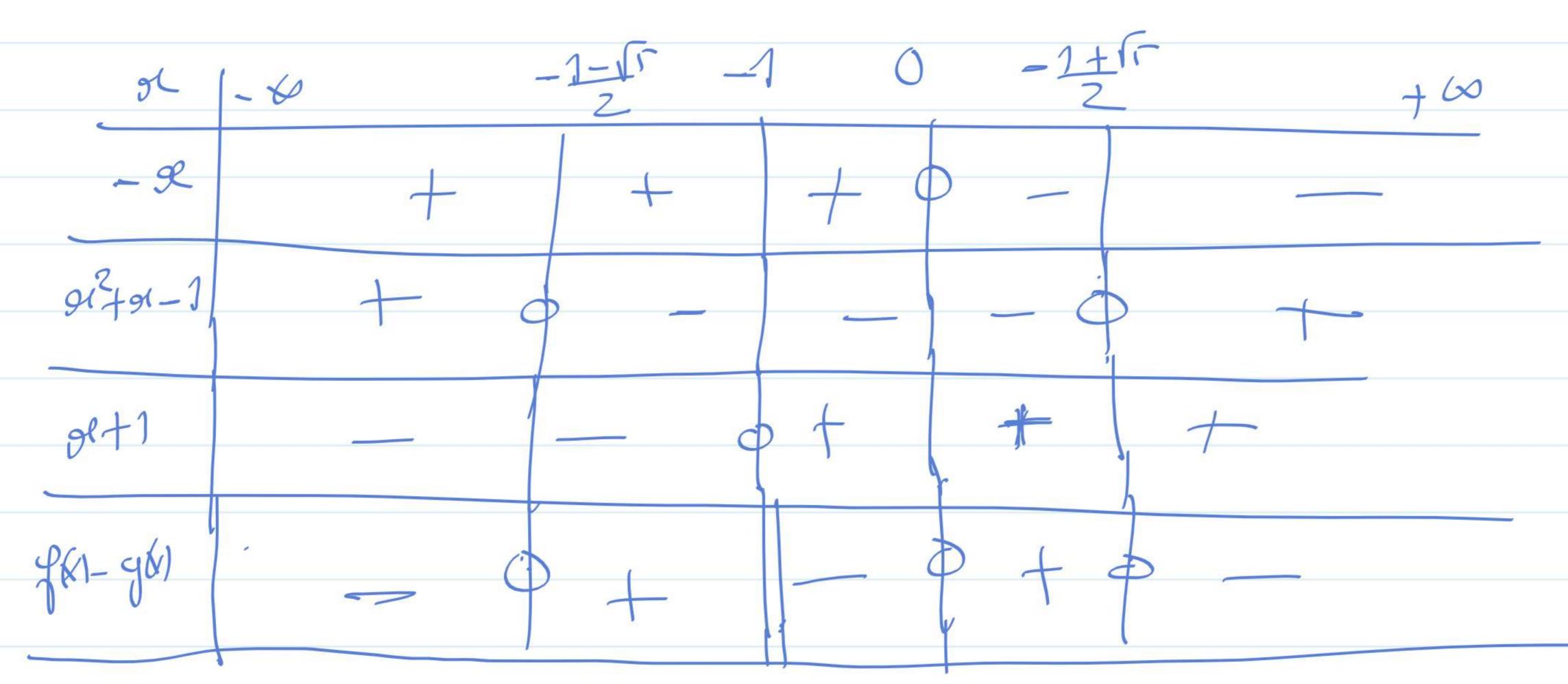
Sort
$$ge \in (R-\frac{7}{4}-1)$$
, on a: $f(x) = g(x) = \frac{x}{g+1} - \frac{x^2}{g+1}$

$$= \frac{g(1-g)^2 - g(1-g)^2}{g+1}$$

$$= -\frac{g(1-g)^2 - g(1-g)^2}{g+1}$$

$$= -\frac{g(1-g)^2 - g(1-g)^2}{g+1}$$

$$9l^{2} + 9l - 1 = 0$$
 \implies $9l = -1 - \sqrt{1}$ on $9l = -1 + \sqrt{1}$
 $(\Delta = 1 + h = 5)$



Cf evr en dessens de Cg son
$$J-\omega_1, -1-\delta r J U J-1; 0 J U \left[-\frac{1+U^{\dagger}r_1+\omega_1}{2}\right]$$

Cf evr en dessens Cg son $\left[-1-\sqrt{r}; -1\right] U \left[0; -\frac{1+\sqrt{r}}{2}\right]$

3)
$$f(x) = \frac{1+2x}{1+4x}$$
 et $g(x) = \frac{1-4x}{1-2x}$
 $f(x) = \frac{1+2x}{1+4x}$ et $g(x) = \frac{1-4x}{1-2x}$
 $f(x) = \frac{1+2x}{1+4x}$ or $\frac{1-2x}{1+4x}$
 $f(x) = \frac{1+2x}{1+4x} = \frac{1-4x}{1-2x}$
 $= \frac{1-4x^2}{1+4x} = \frac{1-4x^2}{1-2x}$
 $= \frac{1-4x^2}{1-2x} = \frac{1-4x^2}{1-2x}$
 $= \frac{1-4x^2}{1-2x} = \frac{1-4x^2}{1-2x}$
 $= \frac{1-2x^2}{1-4x} = \frac{1-4x}{1-2x}$

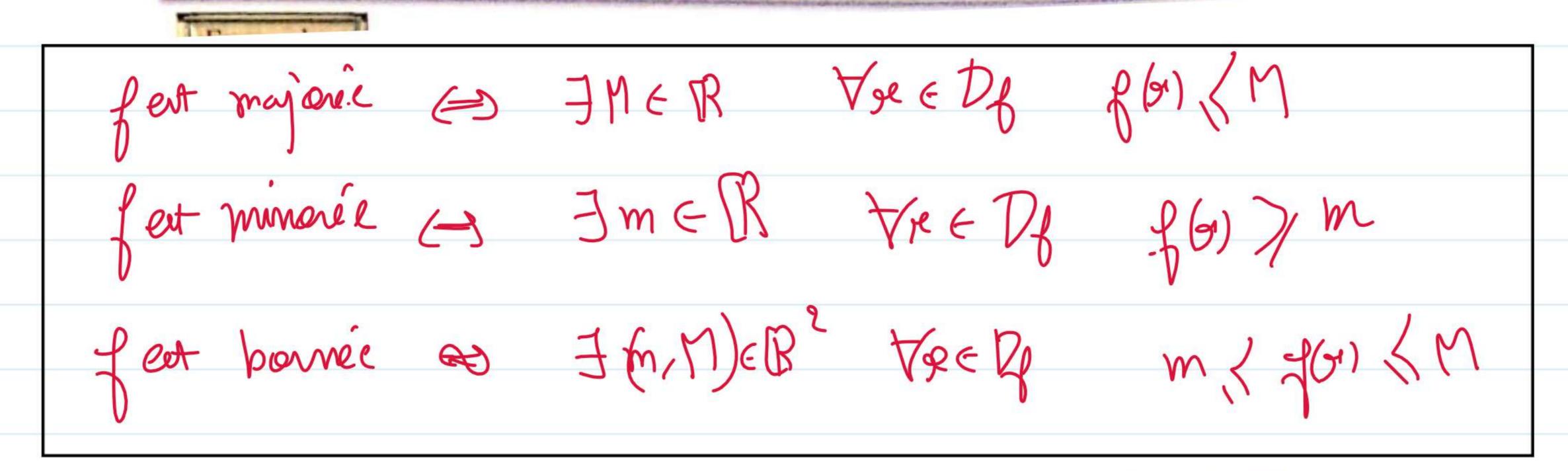
Or a $\frac{12x^2}{1-2x} > 0$ alone is signed if $\frac{1}{2}$ est which is $\frac{1}{2}$ and $\frac{1}{2}$ est which is $\frac{1}{2}$ est in dead $\frac{1}{2}$ est in

FONCTION MAJORÉE - FONCTION MINORÉE - FONCTION BORNÉE

Définition

Soit f une fonction numérique et D_f son ensemble de définition.

- On dit que la fonction f est majorée s'il existe un réel M tel que : $(\forall x \in D_f) f(x) \leq M$. Le nombre M est dit un majorant de la fonction f.
- On dit que la fonction f est minorée s'il existe un réel m tel que : $(\forall x \in D_f) f(x) \ge m$. Le nombre m est dit un minorant de la fonction f.
- On dit que la fonction f est bornée si elle à la fois majorée et minorée, c'est-à-dire qu'il existe deux réels m et M tels que : (∀x ∈ D_f) m ≤ f(x) ≤ M



Exemples

1) On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = \frac{2x^2 + 3}{x^2 + 1}$

Montrons que la fonction f est majorée sur $\mathbb R$ par le nombre 3:

$$\sqrt{8} \in \mathbb{R} \quad \beta(x) = \frac{2x^2 + 3}{x^2 + 1} = \frac{2x^2 + 3 - 3x^2 - 3}{x^2 + 1} = \frac{-x^2}{x^2 + 1} = \frac{-x^2}{x$$

Alers: f se $\in \mathbb{N}$ $f(\sigma) \leq 3$.

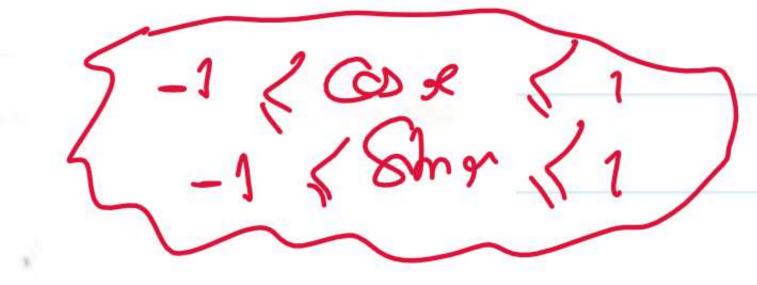
Montrons que la fonction f est minorée par le nombre 2:

$$\forall 90 \in \mathbb{R}$$
 $f(0) - 2 = \frac{290^2 + 3}{90^2 + 1} - 2 = \frac{260^2 + 3 - 260^2 - 2}{90^2 + 1}$

 $=\frac{1}{g^2+1} \gtrsim 0$ Alors: $\forall x \in \mathbb{R} \quad f(x) > 2$

d'ai feit minorée par 2.

2) On considère la fonction g définie sur \mathbb{R} par : $g(x) = 3\cos^2 x - 5\sin x + 1$ Montrons que la fonction g est bornée :



On a pour tout $x \in \mathbb{R}$: $0 \le \cos^2 x \le 1$ et $-5 \le -5\sin x \le 5$; donc: $-5 \le 3\cos^2 x - 5\sin x \le 8$, ce qui entraîne que: $-4 \le g(x) \le 9$. Par suite, la fonction g est bornée par -4 et 9.

3) On considère la fonction h définie sur \mathbb{R} par : $h(x) = x^2 - 4x + 3$. Montrons par l'absurde que la fonction h n'est pas majorée :

suppossons que fi est majorée, als JMEIR YreER fi(91) fM

(M+1>0)

(ge-2)2 (M+1 &s | 91-21 < NH1

(MH170)

de=1M+173, on toanve que.

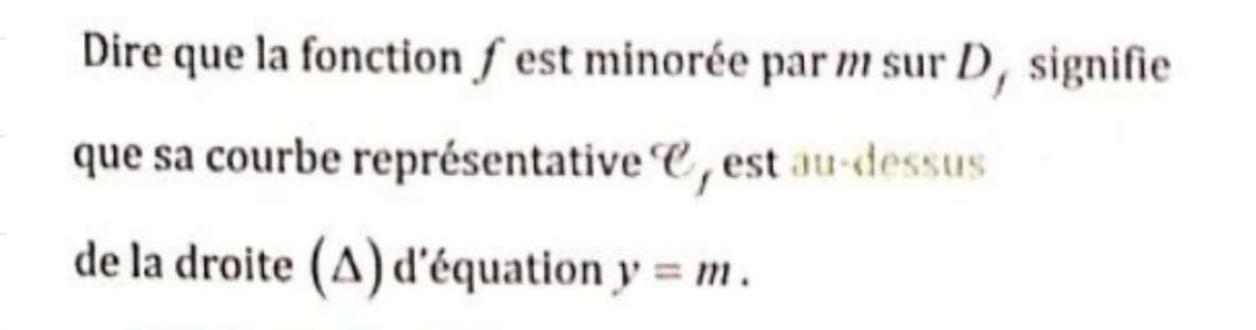
M+1 +3 -2 < N+1

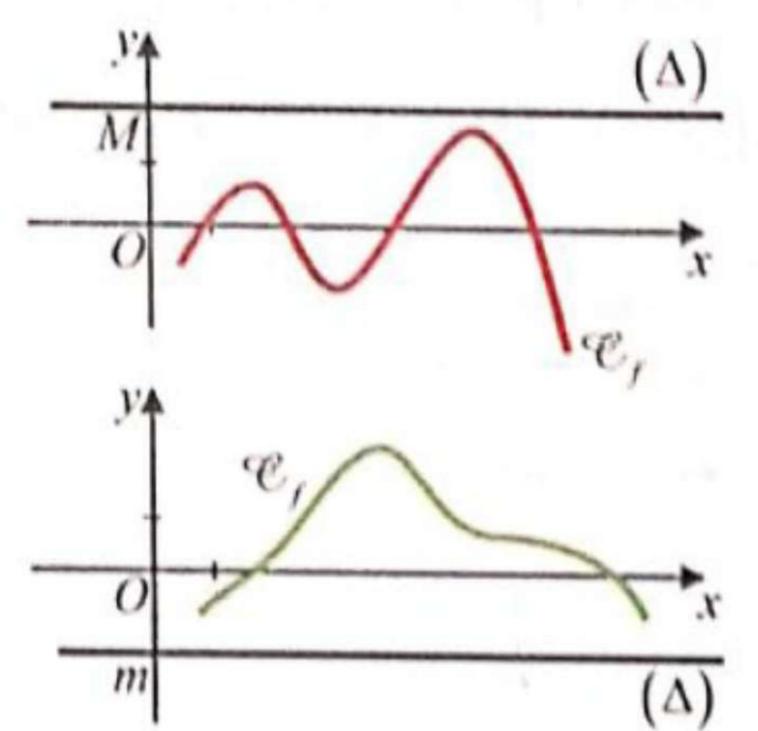
11+ [M+1] < [M+1] 1+ (5x41 / 1 / 1/10)

Jon n'est pas mayorée.

INTERPRÉTATION GRAPHIQUE

Dire que la fonction f est majorée par M sur D_f signifie que sa courbe représentative \mathcal{C}_f est en-dessous de la droite Δ d'équation y=M.





Proposition

Soit f une fonction numérique et D_f son domaine de définition.

Pour que la fonction f soit bornée, il faut et il suffit que : $(\exists \alpha \in \mathbb{R}^+)$; $(\forall x \in D_f) |f(x)| \le \alpha$.

$$|f(x)| \leqslant \alpha$$

$$c \Rightarrow -\alpha \leqslant f(r) \leqslant \alpha$$

$$o = -\alpha \quad \text{ot} \quad M = \alpha$$

$$\exists (m, M) \in \mathbb{R}^2 \quad \forall x \in Pf \quad m \leqslant f(r) \leqslant M$$

$$\partial c = -f \text{ at bornée}.$$

Applications

- 1. On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3}$.
 - a) Montrer que la fonction f est majorée par $\frac{7}{3}$.
 - b) Montrer que la fonction f est minorée par 1.
- 2. Soit g la fonction numérique définie sur \mathbb{R}^* par : $g(x) = x + \frac{1}{x}$.
 - a) Montrer que la fonction g est majorée par 2 sur \mathbb{R}_+^* .
 - b) En déduire que la fonction g est minorée par -2 sur \mathbb{R}^* .
- 3. Soit u et v les fonctions définies sur \mathbb{R} par : $u(x) = \frac{x^4 x^2}{x^4 + 1}$ et $v(x) = 2\cos x 7\sin(2x) + 3$ Montrer que les fonctions u et v sont bornées sur \mathbb{R} .
- 4. On considère la fonction numérique w définie sur \mathbb{R}^+ par : $w(x) = x \sqrt{x+1}$ Montrer par l'absurde que la fonction w n'est pas majorée sur \mathbb{R}^+ .

Applications

- 1. On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = \frac{2x^2 + 7x + 7}{x^2 + 3x + 3}$.
 - a) Montrer que la fonction f est majorée par $\frac{7}{3}$.
 - b) Montrer que la fonction f est minorée par 1.

a)
$$\forall p \in \mathbb{R}$$
 $\int_{0}^{\infty} -\frac{7}{3} = \frac{2x^{2} + 7x + 7}{x^{2} + 3x + 3} - \frac{7}{3}$

$$= \frac{6x^{2} + 2x^{2} + 2x + 2x - 2x}{3(x^{2} + 3x + 3)}$$

$$= \frac{-9x^{2}}{3(x^{2} + 3x + 3)}$$

The diams be signed as
$$9^{2}73x+3$$

$$\Delta = 9 - 12 \quad (0)$$

$$A = 9 - 12 \quad$$

$$= \frac{3x^{2} + 4x + 4}{3x^{2} + 3x + 3}$$

$$= \frac{(3x + 2)^{2}}{3x^{2} + 33x + 3}$$

d'at pot minorée par 1.

3. Soit
$$u$$
 et v les fonctions définies sur \mathbb{R} par : $u(x) = \frac{x^4 - x^2}{x^4 + 1}$ et $v(x) = 2\cos x - 7\sin(2x) + 3$
Montrer que les fonctions u et v sont bornées sur \mathbb{R} .

$$= 9 \qquad (169) < 1$$

et on a
$$U(91) - (-1) = \frac{91^{4} - 91^{2}}{71^{4} + 1} + 1$$

$$=\frac{291^{1}-91^{2}+1}{91^{1}+1}$$

étudions la gigne de 2914_9e²+1

on pose
$$t=9^2$$
 als $291^4-9^2+1=0$ $= 1-9=-7<0$

$$v(x) = 2\cos x - 7\sin(2x) + 3$$

4. On considère la fonction numérique w définie sur \mathbb{R}^+ par : $w(x) = x - \sqrt{x+1}$ Montrer par l'absurde que la fonction w n'est pas majorée sur \mathbb{R}^+ .

EXTREMUMS D'UNE FONCTION NUMÉRIQUE

Définition

Soit f une fonction numérique, D_f son ensemble de définition et $x_0 \in D_f$.

ullet On dit que $f(x_0)$ est la valeur maximale absolue (ou le maximum absolu) de la fonction f si :

$$(\forall x \in D_f) f(x) \le f(x_0)$$

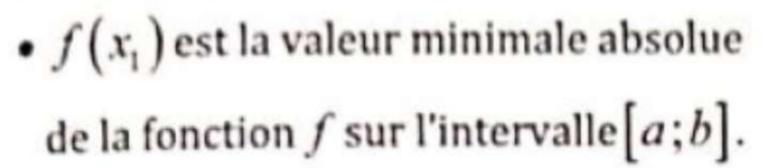
- On dit que $f(x_0)$ est une valeur maximale relative de la fonction f s'il existe un intervalle ouvert I centré en x_0 et inclus dans D_f tel que : $(\forall x \in I) \ f(x) \le f(x_0)$
- On dit que $f(x_0)$ est la valeur minimale absolue (ou le minimum absolu) de la fonction f si :

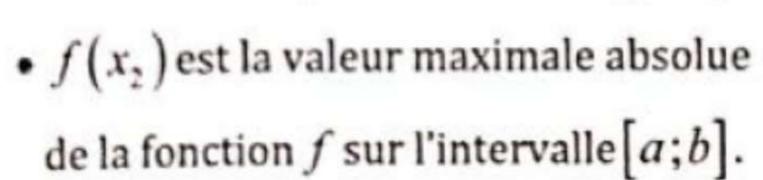
$$(\forall x \in D_f) f(x) \ge f(x_0)$$

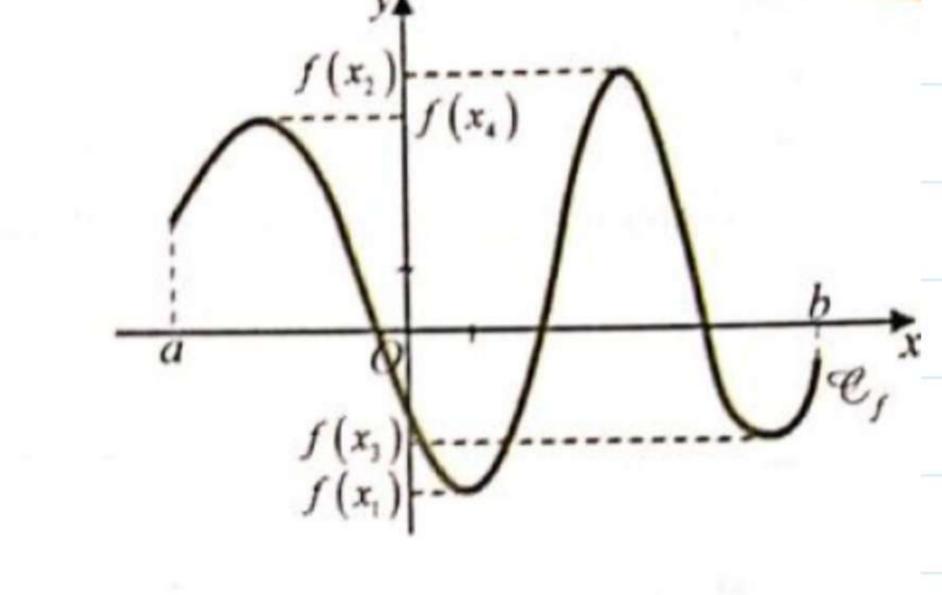
- On dit que $f(x_0)$ est une valeur minimale relative de la fonction f s'il existe un intervalle ouvert I centré en x_0 et inclus dans D_f tel que : $(\forall x \in I) \ f(x) \ge f(x_0)$
- ullet Les valeurs minimales et maximales de la fonction f sont appelées les extremums de f .

INTERPRÉTATION GRAPHIQUE

Soit f une fonction définie sur un intervalle [a;b] représentée par la figure ci-contre.







- $f(x_3)$ est une valeur minimale relative de la fonction f sur l'intervalle [a;b].
- $f(x_4)$ est une valeur maximale relative de la fonction f sur l'intervalle [a;b].

Exemple

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{x}{x^2 + 1}$.

On a pour tout
$$x \in \mathbb{R}$$
: $\frac{1}{2} - f(x) = \frac{1}{2} - \frac{x}{x^2 + 1} = \frac{x^2 + 1 - 2x}{2(x^2 + 1)} = \frac{(x - 1)^2}{2(x^2 + 1)}$.

Puisque
$$\frac{\left(x-1\right)^2}{2\left(x^2+1\right)} \ge 0$$
, alors pour tout $x \in \mathbb{R}: f\left(x\right) \le \frac{1}{2}$. Comme $f\left(1\right) = \frac{1}{2}$, alors $: f\left(x\right) \le f\left(1\right)$.

Ainsi, la fonction f admet un maximum absolu en 1 qui est $f(1) = \frac{1}{2}$.

De même, on a pour tout
$$x \in \mathbb{R}$$
: $f(x) + \frac{1}{2} = \frac{x}{x^2 + 1} + \frac{1}{2} = \frac{x^2 + 1 + 2x}{2(x^2 + 1)} = \frac{(x+1)^2}{2(x^2 + 1)}$.

Puisque
$$\frac{(x+1)^2}{2(x^2+1)} \ge 0$$
, alors pour tout $x \in \mathbb{R} : f(x) \ge -\frac{1}{2}$. Comme $f(-1) = -\frac{1}{2}$, alors : $f(x) \ge f(-1)$.

Ainsi, la fonction f admet un minimum absolu en -1 qui est $f(-1) = -\frac{1}{2}$.

Remarques

 Ne jamais confondre minorant et minimum d'une fonction. Le minimum d'une fonction est un minorant qui admet un antécédent. Autrement dit, le réel m est une valeur minimale de f sur I

si, et seulement si :

$$\begin{cases} (\forall x \in I) & f(x) \ge m \\ (\exists x_n \in I); & f(x_n) = m \end{cases}$$

ullet Ne jamais confondre majorant et maximum d'une fonction. Le maximum d'une fonction est un majorant qui admet un antécédent. Autrement dit, le réel M est une valeur maximale de f sur I

si, et seulement si :

$$\begin{cases} (\forall x \in I) & f(x) \le M \\ (\exists x_0 \in I); f(x_0) = M \end{cases}$$

Applications

- 1. On considère les fonctions f et g définies sur \mathbb{R} : $f(x) = x^2 + 2x + 3$ et $g(x) = -x^2 + 3x + 5$.
 - a) Montrer que 2 est la valeur minimale absolue de la fonction f .
 - b) Montrer que $\frac{29}{4}$ est la valeur maximale absolue de la fonction g.
- 2. On considère la fonction h définie sur \mathbb{R}^* : $h(x) = |x| + \frac{1}{|x|}$.

Montrer que h admet un minimum absolu au point 1.

- 1. On considère les fonctions f et g définies sur \mathbb{R} : $f(x) = x^2 + 2x + 3$ et $g(x) = -x^2 + 3x + 5$.
 - a) Montrer que 2 est la valeur minimale absolue de la fonction f.

$$\forall x \in \mathbb{R} \quad f(x) - 2 = g(x^2 + 2g(x + 1))^2 = (g(x + 1))^2 = f(-1)$$

$$- f(x) = f(x) = f(-1)$$

$$- f(x) = f(-1)$$

Duc 2 out la valeur minimale absolue de f.

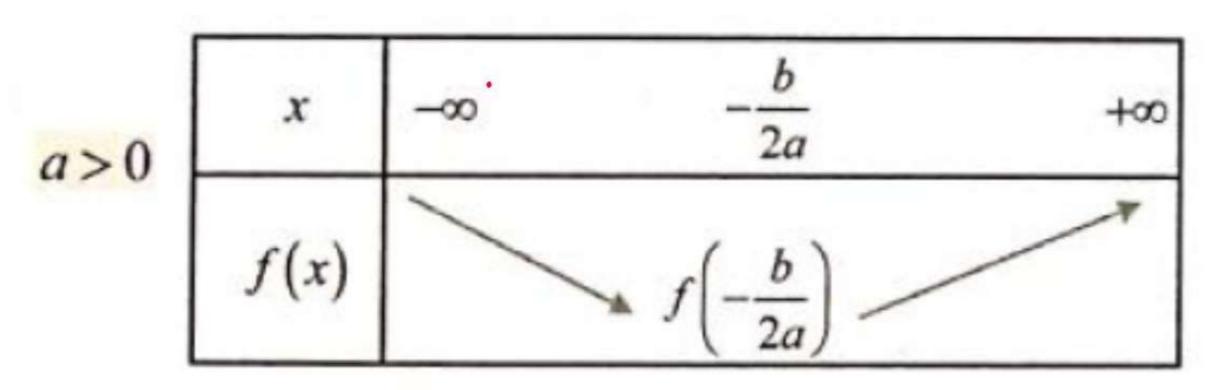
b) Montrer que $\frac{29}{4}$ est la valeur maximale absolue de la fonction g.

REPRÉSENTATION GRAPHIQUE DE QUELQUES FONCTIONS USUELLES

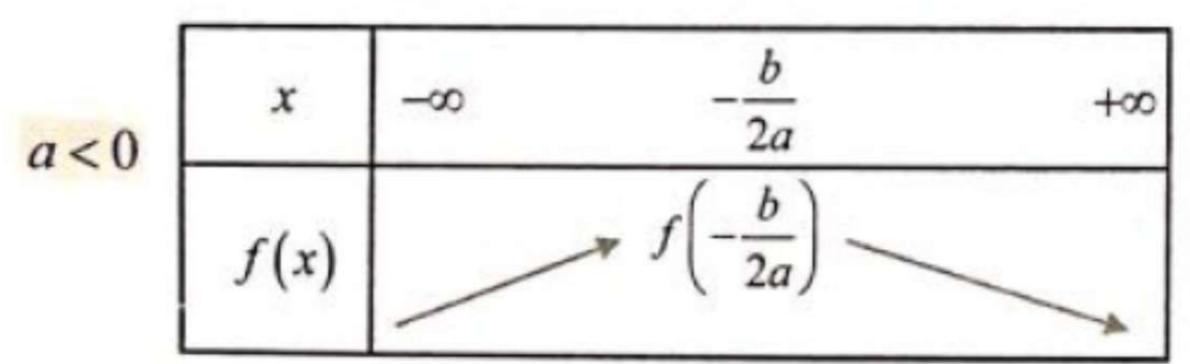
6.1. LA FONCTION TRINÔME DU SECOND DEGRÉ - PARABOLE

Soit f la fonction définie sur \mathbb{R} par : $f(x) = ax^2 + bx + c$ où a, b et c sont des réels avec $a \neq 0$.

♣ Tableaux de variations :

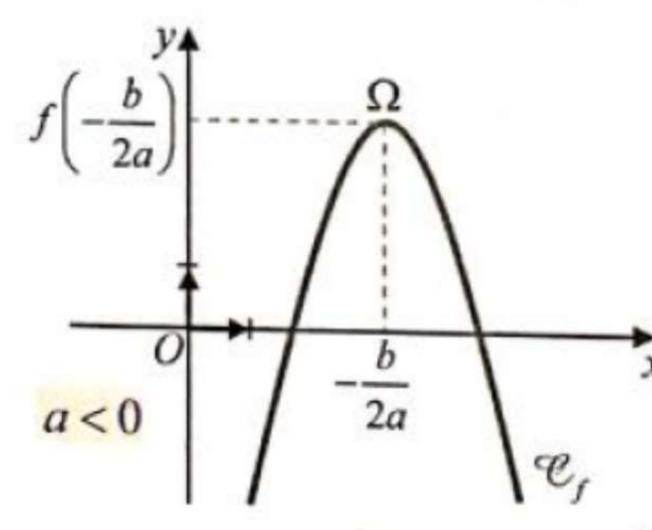


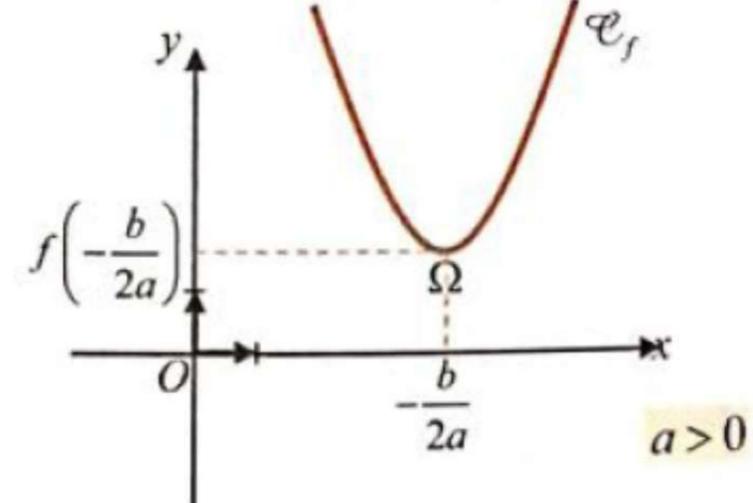
 $f\left(-\frac{b}{2a}\right)$ est la valeur minimale absolue de la fonction f sur \mathbb{R} .



 $f\left(-\frac{b}{2a}\right)$ est la valeur maximale absolue de la fonction f sur \mathbb{R} .

Courbes représentatives :



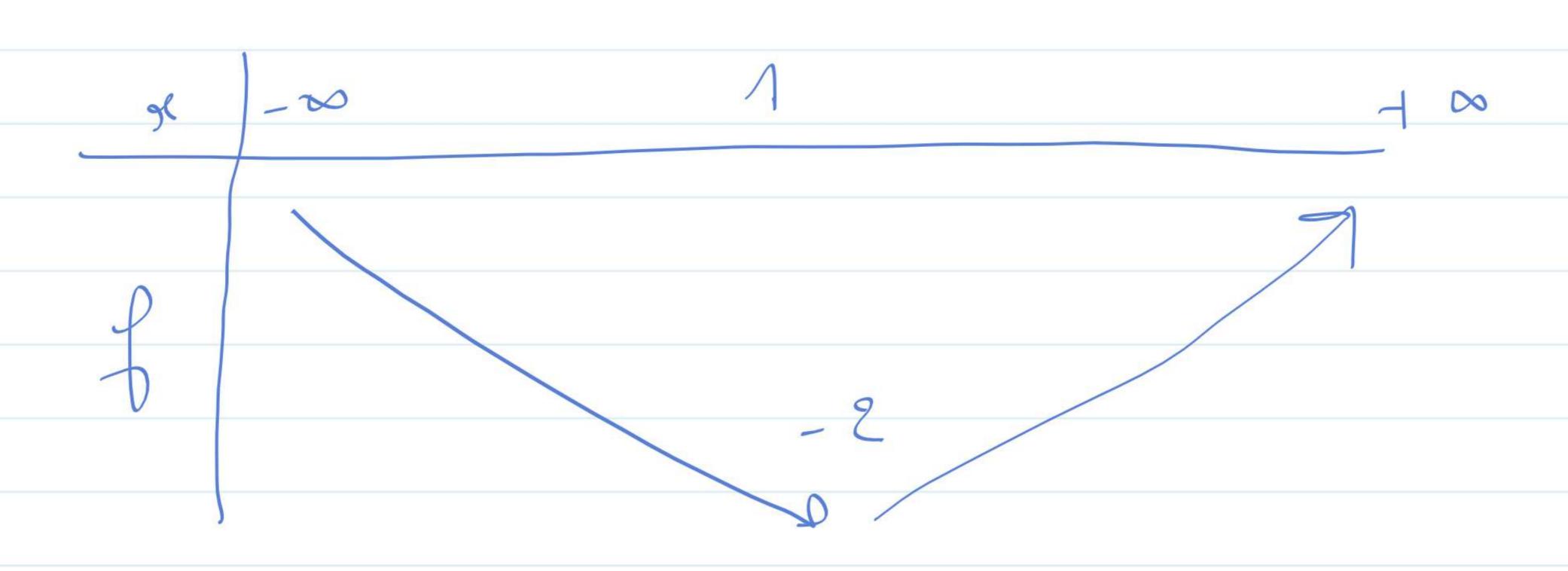


 \mathscr{C}_f est une parabole de sommet $\Omega\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$ et d'axe de symétrie d'équation $x = -\frac{b}{2a}$.

Exemple

On considère la fonction f définie sur \mathbb{R} par : $f(x) = 3x^2 - 6x + 1$.

o Tablean de Vaniations
$$a = 370 \quad \text{et} \quad -\frac{b}{2a} = \frac{-(-6)}{2 \times 3} = 1 \quad \text{ot} \quad \int_{-7a}^{7a} (-\frac{b}{7a}) = 3 \times 1 - 6 \times 1 + 1 = -2$$



e La course de ?:

$$f(x) = -2x^2 + x + 1$$
 ; $g(x) = x^2 + 2x + 2$; $h(x) = -x^2 + |x|$

$$g(x) = x^2 + 2x + 2$$

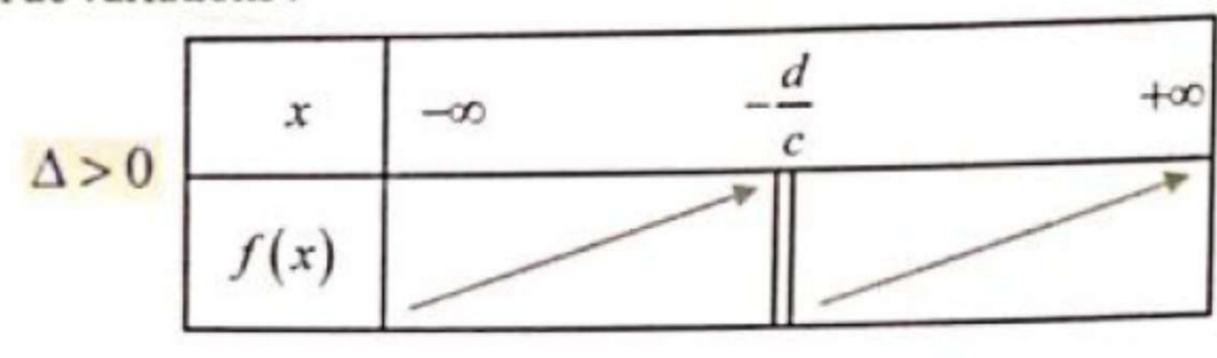
$$h(x) = -x^2 + |x|$$

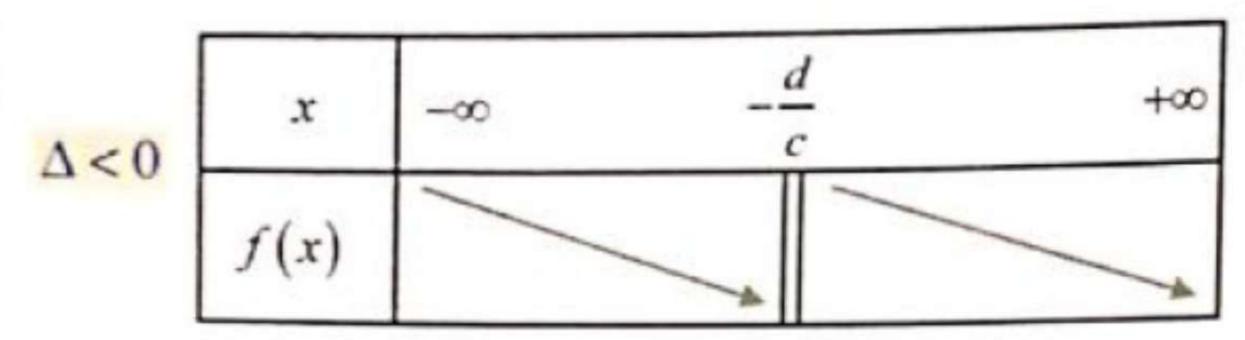
6.2. LA FONCTION HOMOGRAPHIQUE - HYPERBOLE

Soit f la fonction numérique définie sur $\mathbb{R} - \left\{ -\frac{d}{c} \right\}$ par : $f(x) = \frac{ax+b}{cx+d}$ où a,b,c et d sont des réels

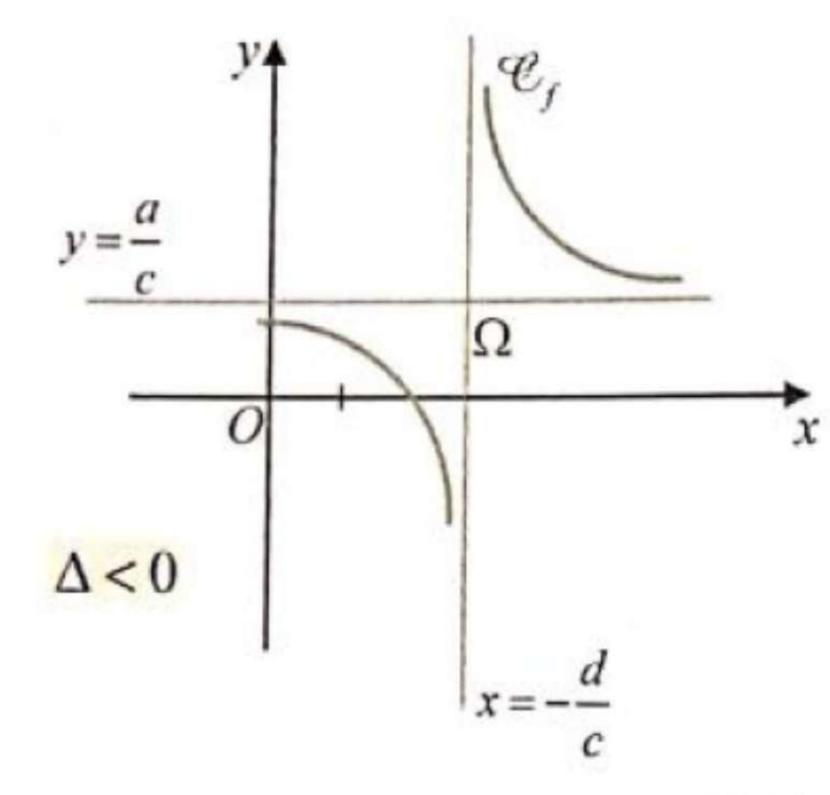
avec $c \neq 0$ et $ad - bc \neq 0$. On pose: $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

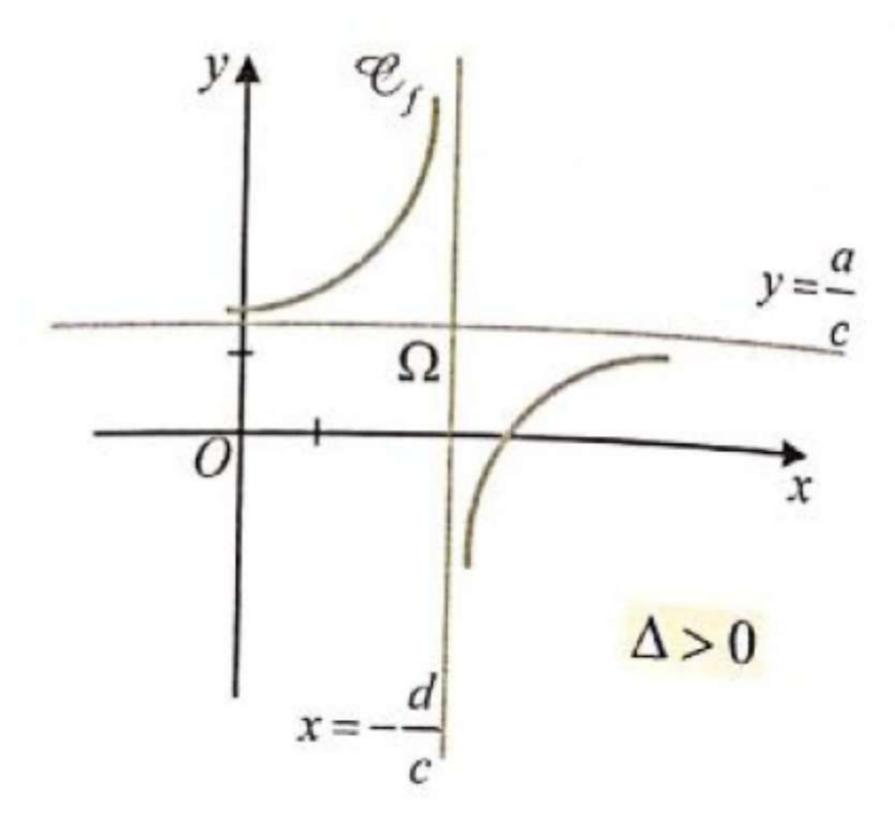
Tableaux de variations :





Courbes représentatives :



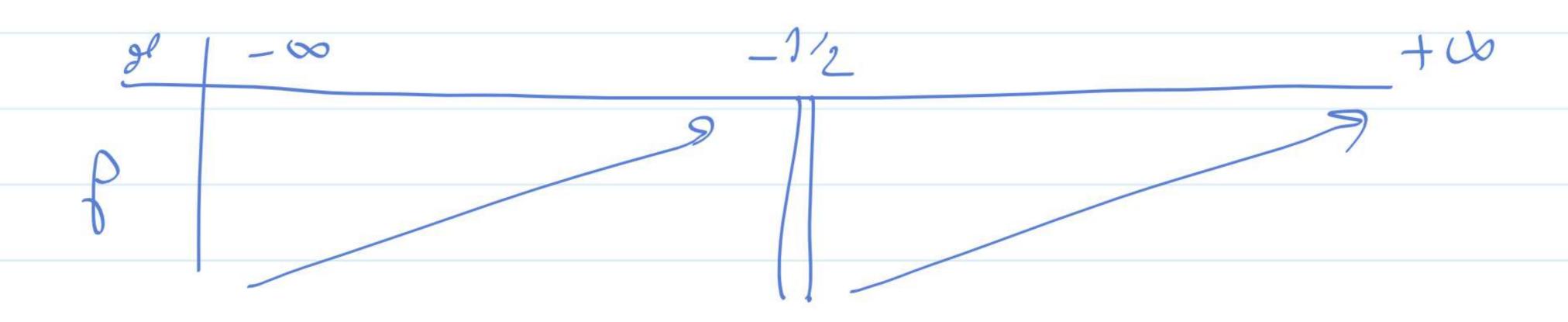


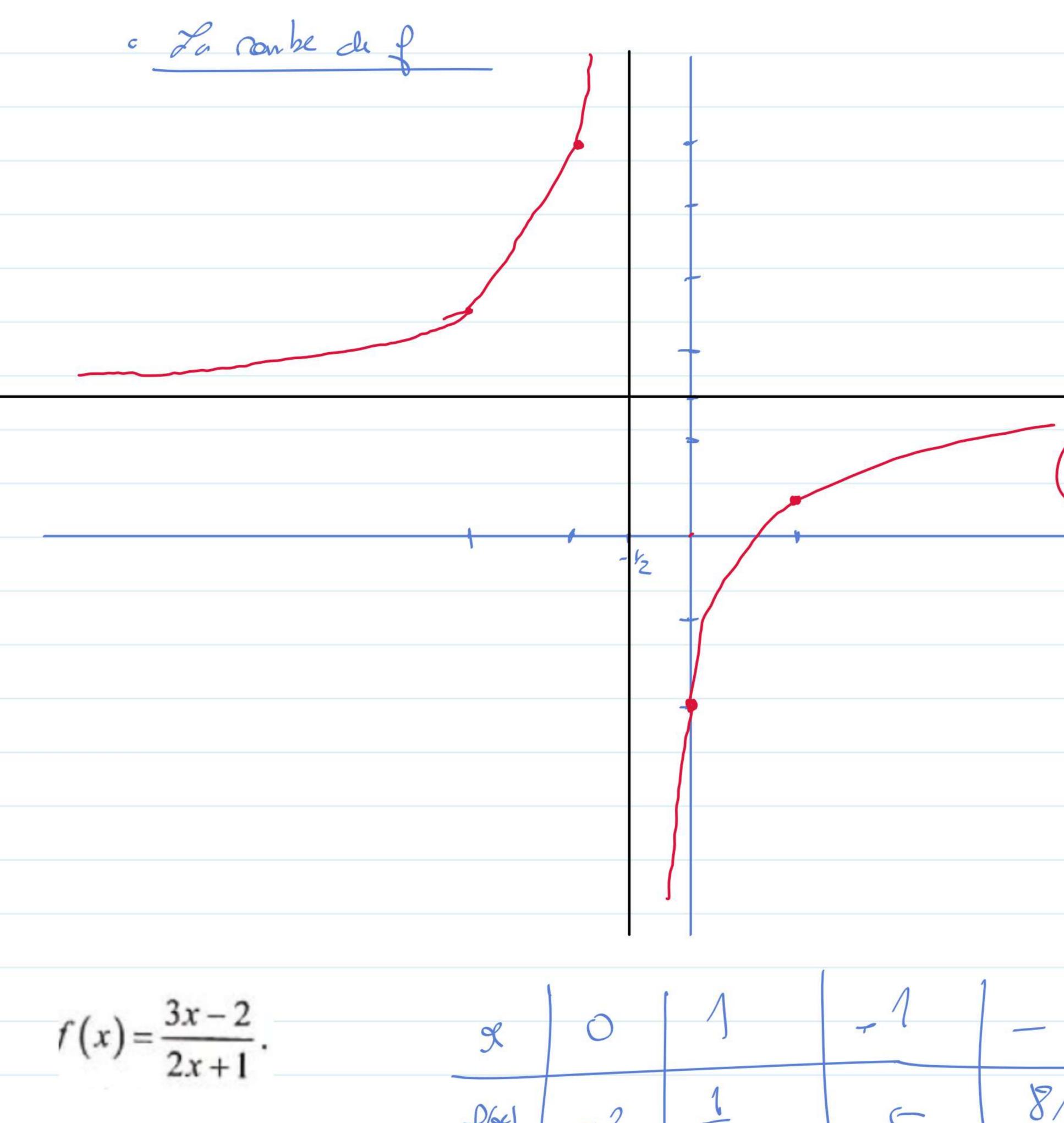
 \mathscr{C}_f est une hyperbole de centre $\Omega\left(-\frac{d}{c};\frac{a}{c}\right)$ et d'asymptotes les droites d'équations $x=-\frac{d}{c}$ et $y=\frac{a}{c}$.

Exemple

On considère la fonction f définie sur par : $f(x) = \frac{3x-2}{2x+1}$.

$$\Delta = \begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix} = 3 \times 1 - (-2) \times 2 = 3 + 4 = 7 > 0$$





$$f(x) = \frac{3x - 2}{2x + 1}.$$

6.3. LA FONCTION $x \mapsto ax^3 \ (a \neq 0)$

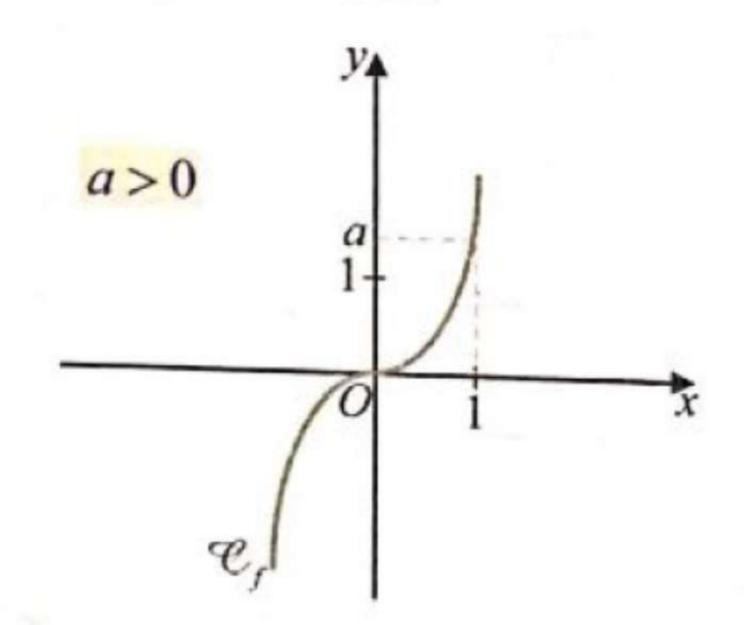
Soit f la fonction numérique définie sur \mathbb{R} par : $f(x) = ax^3$ où a est un réel non nul.

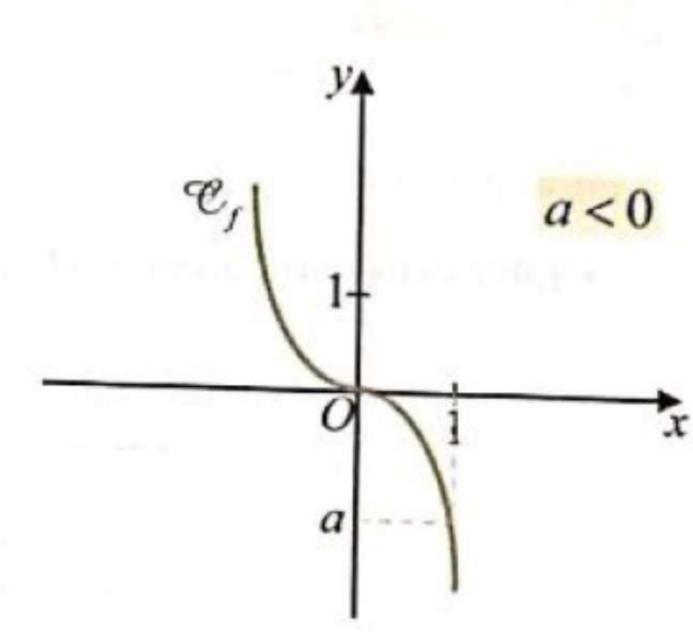
♣ Tableaux de variations :

x	-8	+∞
f(x)		>
	a>0	

 \boldsymbol{x} $-\infty$ $+\infty$ f(x)a < 0

Courbes représentatives :





La fonction $f: x \mapsto ax^3$ est impaire et sa courbe \mathscr{C}_f est symétrique par rapport à l'origine du repère. La courbe \mathscr{C}_f passe aussi par le point de coordonnées (1;a) car : f(1) = a.

6.4. LA FONCTION $x \mapsto \sqrt{x + a} \ (a \in \mathbb{R})$

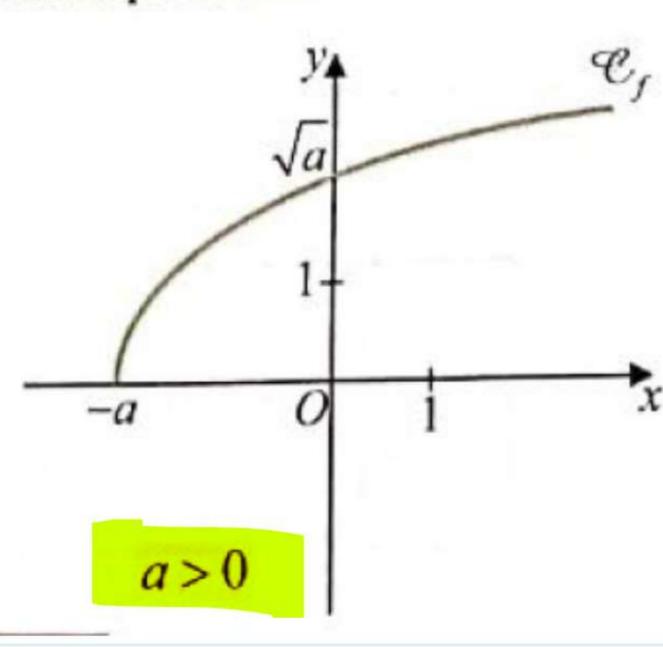
Soit f la fonction numérique définie par : $f(x) = \sqrt{x+a}$ où a est un nombre réel.

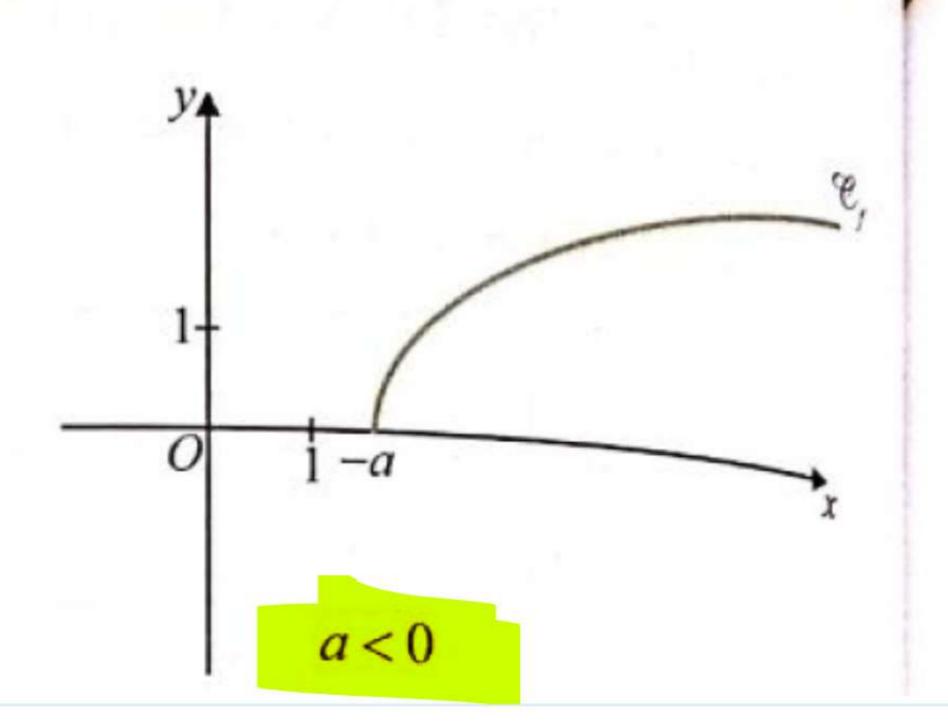
La fonction f est définie et strictement croissante sur l'intervalle $[-a;+\infty[$.

♣ Tableau de variations :

x	-a	+00
f(x)	0	-

Courbes représentatives :





Exemple

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \sqrt{x-1}$.

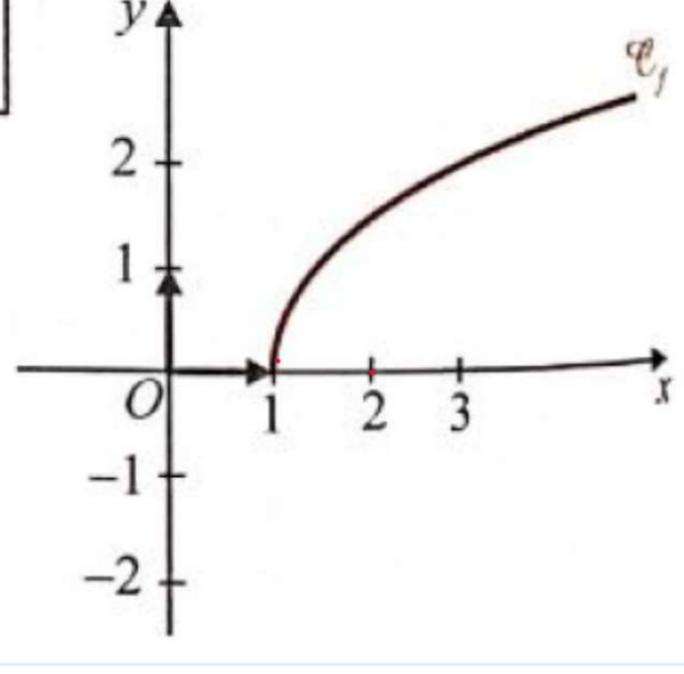
L'ensemble de définition de la fonction f est : $D_f = [1; +\infty[$

• Tableau de variations de la fonction f :

x	1	+∞
f(x)	0 —	-

• Tableau de quelques valeurs de f(x) et construction de \mathscr{C}_f :

x	1	2	3	4
f(x)	0	1	√2	√3



6.5. FONCTION PARTIE ENTIÈRE

Définition

Soit x un nombre réel.

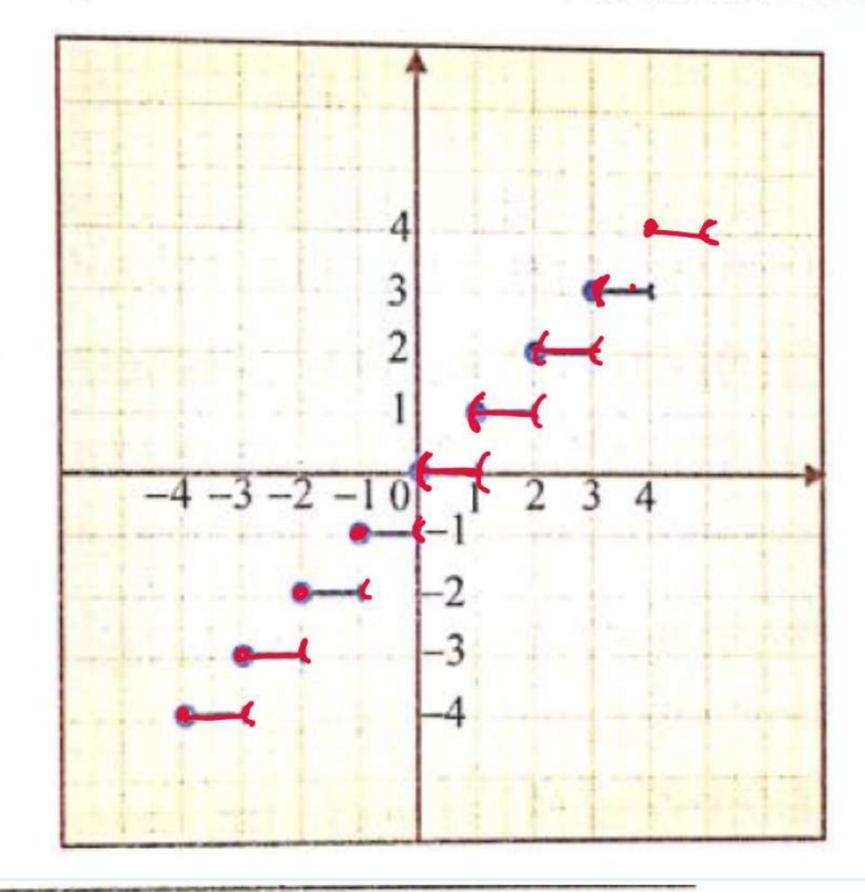
La partie entière de x est le plus grand entier relatif n qui est inférieur ou égal à x. On la note : E(x) ou [x].

Exemples

$$E(4,2) = 4$$
 ; $E(-3,75) = -4$; $E(\sqrt{3}) = 1$; $E(-\frac{9}{4}) = -3$; $E(\frac{1}{2}) = 0$
 $E(\pi) = 3$; $E(-0,1457) = -1$; $E(\sqrt{3} + \sqrt{2}) = 3$; $E(-1) = -1$

Proposition

- Pour tout $x \in \mathbb{R}$: $E(x) \le x < E(x) + 1$ et $x 1 < E(x) \le x$.
- Pour tout $x \in \mathbb{R}$: $E(x) = x \Leftrightarrow x \in \mathbb{Z}$.
- Pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{Z}$: E(x+n) = E(x) + n
 - 4 Courbe représentative de la fonction partie entière : Soit $k \in \mathbb{Z}$. Si $k \le x < k+1$ alors E(x) = k. Par suite, la fonction partie entière est constante sur l'intervalle [k;k+1[. On obtient ainsi la courbe représentative suivante :



Applications

Résoudre dans ℝ les équations et les inéquations suivantes :

$$F(r) = 0$$

$$E(x) = 2$$

$$F(x) = -3$$

$$E(x) = 0$$
 ; $E(x) = 2$; $E(x) = -3$; $3E(x) - 1 = 0$
 $E(x) < 2$; $E(x) \ge -1$; $-1 \le E(x) < 3$; $2E(x) + 3 < 0$

$$E(x) \ge -1$$

$$-1 \le E(x) \le 3$$

$$2E(x)+3<0$$

2. On considère la fonction numérique f définie sur \mathbb{R} par : f(x) = x - E(x).

$$f(\sqrt{2})$$

a) Calculer:
$$f(-5)$$
; $f(\sqrt{2})$; $f(8)$; $f(\frac{3}{2})$; $f(5,2)$.

- b) Montrer que: $(\forall x \in \mathbb{R}) \ 0 \le f(x) < 1$.
- c) Tracer la courbe représentative de f sur l'intervalle [-6;6].

Schution

Résoudre dans ℝ les équations et les inéquations suivantes :

E(x) = 0 ; E(x) = 2 ; E(x) = -3 ;

3E(x)-1=0

E(x) < 2; $E(x) \ge -1$; $-1 \le E(x) < 3$

2E(x)+3<0

· E(9) = 0 (3) & E [0,1[] dac S= [0,1[

» E/91 = 2 CB 9€ [2,3[]c= S= [2,3[

 $F(a) = -3 \quad \Leftrightarrow \quad \mathcal{R} \in [-3, -2[\quad duc \quad S = [-3, -2[$

3 E(91)-1=0 = 1= 1= 1= 1= 1 = 76 Jimpossible Car E(91) E76

du S = 8

a E(4) <2 => & EJ-60,2[dur S=J-00,2[.

o $E(x) > -1 \Leftrightarrow x \in [-1; +\infty[$ $S = [-1; +\infty[$,

o -1 < F(4) < 3 ← E(91) ∈ {-1,0,1,2}

ge E [-1, 3 [

dec 5 = [-1,3 [

2E(91) +3 (0 (=) E(91) (-3/9

(3) ge (3) - 15

Jac 5= 7-00,-16.

COMPOSÉE DE DEUX FONCTIONS NUMÉRIQUES

Définition

Soit f et g deux fonctions définies respectivement sur deux ensembles I et J tels que : $f(I) \subset J$.

La fonction numérique h définie sur I par :

$$h(x) = g(f(x)) =$$

est appelée composée des fonctions f et g dans cet ordre.

Elle est notée gof (se lit : g rond f).

On a alors:
$$(\forall x \in I) gof(x) = g(f(x))$$

$$\begin{array}{cccc}
I & \xrightarrow{f} & J & \xrightarrow{g} & \mathbb{R} \\
x & \mapsto & f(x) & \mapsto & g(f(x)) \\
& & & & & & & & \\
go f(x) & & & & & & \\
\end{array}$$

Exemples

1) Soit f et g les fonctions numériques définies sur \mathbb{R} par : $f(x) = x^2 - 2x + 3$ et g(x) = 2x + 1

Déterminons gof et fog:

Puisque les fonctions f et g sont définies sur $\mathbb R$, alors il en est de même pour g o f et f o g .

On a pour tout $x \in \mathbb{R}$:

$$g \circ f(x) = g(f(x)) = g(x^2 - 2x + 3) = 2(x^2 - 2x + 3) + 1 = 2x^2 - 4x + 7$$

De même:
$$f \circ g(x) = f(g(x)) = f(2x+1) = (2x+1)^2 - 2(2x+1) + 3 = 4x^2 + 2$$

Par conséquent, pour tout $x \in \mathbb{R}$: $go f(x) = 2x^2 - 4x + 7$ et $fog(x) = 4x^2 + 2$

On remarque bien que: $g \circ f \neq f \circ g$.

2) Soit f et h les fonctions numériques définies sur \mathbb{R} par : f(x) = x - 1 et $h(x) = 2x^2 + 3x - 1$ Déterminons la fonction g telle que : $h = g \circ f$.

Soit $x \in \mathbb{R}$. On a: $h(x) = g \circ f(x) = g(f(x))$.

On pose: y = f(x), donc y = x - 1, d'où: x = y + 1. Donc:

$$g(y) = h(x) = 2x^2 + 3x - 1 = 2(y+1)^2 + 3(y+1) - 1 = 2y^2 + 7y + 4$$

Donc g est la fonction définie sur \mathbb{R} : $g(x) = 2x^2 + 7x + 4$

Remarques

- On n'a pas en général : gof = fog.
- On a: $D_{gof} = \left\{ x \in \mathbb{R} / x \in D_f \text{ et } f(x) \in D_g \right\}$ et $D_{fog} = \left\{ x \in \mathbb{R} / x \in D_g \text{ et } g(x) \in D_f \right\}$.
- Pour décomposer une fonction, les conventions de priorité de calcul (entre puissance, produit, somme,) permettent de déterminer les fonctions de référence et l'ordre dans lequel les enchaîner.

Proposition

Soit f et g deux fonctions définies respectivement sur deux intervalles I et J tels que : $f(I) \subset J$.

- ullet Si f et g ont le même sens de variation, alors g o f est croissante (éventuellement strictement croissante) sur l'intervalle I.
- ullet Si f et g ont des sens de variation contraires, alors g o f est décroissante (éventuellement strictement décroissante) sur l'intervalle I.

Preuve

- On suppose que f est croissante sur I et g est croissante sur J.

 Soit x_1 et x_2 deux éléments de I tels que $x_1 \le x_2$. Puisque f est croissante sur I, alors : $f(x_1) \le f(x_2)$.

 Comme $f(x_1) \in J$ et $f(x_2) \in J$, alors : $g(f(x_1)) \le g(f(x_2))$ (car g est croissante sur J).

 Il s'ensuit donc que : $g \circ f(x_1) \le g \circ f(x_2)$. Ainsi, la fonction $g \circ f$ est croissante sur I.
- On suppose que f est croissante sur I et g est décroissante sur J.

 Soit x_1 et x_2 deux éléments de I tels que $x_1 \le x_2$. Puisque f est croissante sur I, alors : $f(x_1) \le f(x_2)$.

 Comme $f(x_1) \in J$ et $f(x_2) \in J$, alors : $g(f(x_1)) \ge g(f(x_2))$ (car g est décroissante sur J).

 Il s'ensuit donc que : $g \circ f(x_1) \ge g \circ f(x_2)$. Ainsi, la fonction $g \circ f$ est décroissante sur I.

Exemples

1) Soit f la fonction numérique définie sur] $-\infty$; 0[par: $f(x) = 1 + \frac{1}{x^2}$.

Étudions la monotonie de la fonction f sur $]-\infty;0[$:

En posant : $u(x) = x^2$ et $v(x) = 1 + \frac{1}{x}$, on obtient : $(\forall x \in]-\infty; 0[)$ f(x) = v(u(x)) = vou(x).

De plus :

- la fonction# est décroissante sur]-∞;0[;
- · "(]-v:0[) = [0;+v) ;
- la fonction r'est décroissante sur $]0;+\infty[$.

If s'ensuit donc que la fonction f = vou est croissante sur l'intervalle $]-\infty;0[$.

FONCTION PÉRIODIQUE

Définition

Soit f une fonction numérique et D_f son ensemble de définition.

On dit que f est périodique s'il existe un réel non nul T tel que pour tout $x \in D_f$:

$$(x+T) \in D_f$$
 et $(x-T) \in D_f$ et $f(x+T) = f(x)$

Le nombre réel T est appelé alors une période de f. La plus petite période strictement positive de la fonction f (lorsqu'elle existe) est appelée la période de la fonction f.

Exemples

1) Les fonctions $x \mapsto \cos x$ et $x \mapsto \sin x$ sont périodiques de période 2π car :

$$(\forall x \in \mathbb{R}) \cos(x+2\pi) = \cos x \text{ et } \sin(x+2\pi) = \sin x$$

- 2) La fonction $x \mapsto \tan x$ est périodique de période π .
- 3) Soit ω_0 un réel strictement positif et $\varphi \in \mathbb{R}$.

Les fonctions $f: t \mapsto \sin(\omega_0 t + \varphi)$ et $g: t \mapsto \cos(\omega_0 t + \varphi)$ sont périodiques de période $T = \frac{2\pi}{\omega_0}$.

En effet, on a pour tout $t \in \mathbb{R}$:

$$f\left(t + \frac{2\pi}{\omega_0}\right) = \sin\left(\omega_0\left(t + \frac{2\pi}{\omega_0}\right) + \varphi\right) = \sin\left(\omega_0t + 2\pi + \varphi\right) = \sin\left(\omega_0t + \varphi\right) = f\left(t\right)$$

et:
$$g\left(t + \frac{2\pi}{\omega_0}\right) = \cos\left(\omega_0\left(t + \frac{2\pi}{\omega_0}\right) + \varphi\right) = \cos\left(\omega_0t + 2\pi + \varphi\right) = \cos\left(\omega_0t + \varphi\right) = g(t).$$

Proposition

Soit f une fonction périodique de période T et \mathscr{C}_f sa courbe représentative dans un repère $(O; \overline{i}; \overline{j})$.

- ullet Pour tout $k \in \mathbb{Z}^*$, le nombre kT est aussi une période de la fonction f .
- La courbe de \mathscr{C}_f est invariante par toute translation de vecteur $kT.\vec{i}$ avec $k \in \mathbb{Z}$.
- Si $x_0 \in \mathbb{R}$ est un réel donné, la courbe représentative \mathscr{C}_f est la réunion des images de l'ensemble $\{M(x;f(x))/x \in D_f \cap [x_0,x_0+T[\}) \text{ par toutes les translations de vecteur } kT.\vec{i} \text{ avec } k \in \mathbb{Z}.$

Ainsi, pour étudier une fonction périodique de période T, il suffit de l'étudier sur un intervalle de $\mathbb R$ de longueur T. (Très souvent, on choisit un des deux intervalles $\left[0,T\right]$ ou $\left[-\frac{T}{2},\frac{T}{2}\right]$).