Paper 1:	Pure	Mathematics	Mark	Scheme
----------	------	--------------------	------	--------

Question	Scheme	Marks	AOs
1	Uses $y = mx + c$ with both (3, 1) and (4, -2) and attempt to find m or c	M1	1.1b
<u>Way 1</u>	m = -3	A1	1.1b
	c = 10 so y = -3x + 10 o.e.	A1	1.1b
		(3)	
Or Way 2	Uses $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$ with both (3, 1) and (4, -2)	M1	1.1b
<u></u>	Gradient simplified to -3 (may be implied)	A1	1.1b
	y = -3x + 10 o.e.	A1	1.1b
		(3)	
Or <u>Way 3</u>	Uses $ax + by + k = 0$ and substitutes both $x = 3$ when $y = 1$ and $x = 4$ when $y = -2$ with attempt to solve to find a , b or k in terms of one of them	M1	1.1b
	Obtains $a = 3b, k = -10b$ or $3k = -10a$	A1	1.1b
	Obtains $a = 3, b = 1, k = -10$ Or writes $3x + y - 10 = 0$ o.e.	A1	1.1b
		(3)	
		(7 n	narks)
Notes:			
M1: Nee	d correct use of the given coordinates		
	d fractions simplified to -3 (in ways 1 and 2)		
A1: Nee	d constants combined accurately		
N.B.	Answer left in the form $(y-1) = -3(x-3)$ or $(y-(-2)) = -3(x-4)$ M1A1A0 as answers should be simplified by constants being collect		ed

Note that a correct answer implies all three marks in this question

Quest	ion Scheme	Marks	AOs
2	Attempt to differentiate	M1	1.1a
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 12$	A1	1.1b
	Substitutes $x = 5 \implies \frac{dy}{dx} =$	M1	1.1b
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 8$	Alft	1.1b
		(4 n	narks)
Notes	:		
M1:	Differentiation implied by one correct term		
A1:	Correct differentiation		
M1: A1ft:	Attempts to substitute $x = 5$ into their derived function Substitutes $x = 5$ into their derived function correctly i.e. Correct calculation of their f '(5) so follow through slips in differentiation		

Questio	n Scheme	Marks	AOs
3(a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1	1.1b
	$\overrightarrow{AB} = 5\mathbf{i} + 10\mathbf{j}$	Al	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(5)^2 + (10)^2}$	M1	1.1b
	$ AB = 5\sqrt{5}$	A1ft	1.1b
		(2)	
		(4 r	narks)
Notes:			
	tempts subtraction but may omit brackets o (allow column vector notation)		
	orrect use of Pythagoras theorem or modulus formula using their ans $B =5\sqrt{5}$ ft from their answer to (a)	swer to (a)	
NT 1	the convect memory in lies M141 in each must of this mostion		

Note that the correct answer implies M1A1 in each part of this question

Quest	on Scheme	Marks	AOs		
4(a)	States or uses $f(+3) = 0$	M1	1.1b		
	$4(3)^3 - 12(3)^2 + 2(3) - 6 = 108 - 108 + 6 - 6 = 0$ and so $(x - 3)$ is a factor	A1	1.1b		
		(2)			
(b)	Begins division or factorisation so x $4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 +)$	M1	2.1		
	$4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 + 2)$	A1	1.1b		
	Considers the roots of their quadratic function using completion of square or discriminant	M1	2.1		
	$(4x^2 + 2) = 0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4x^2 + 2 > 0$ for all x So $x = 3$ is the only real root of $f(x) = 0$ *	A1*	2.4		
		(4)			
		(6 n	narks)		
Notes:					
	States or uses $f(+3) = 0$ See correct work evaluating and achieving zero, together with correct concl	lusion			
(b)					
. ,	Needs to have $(x - 3)$ and first term of quadratic correct				
	Must be correct – may further factorise to $2(x-3)(2x^2+1)$				
	Considers their quadratic for no real roots by use of completion of the square or				
	consideration of discriminant then				
A1*:	A correct explanation				

Ques	tion	Scheme	Marks	AOs
5		$f(x) = 2x + 3 + 12 x^{-2}$	B1	1.1b
		Attempts to integrate	M1	1.1a
		$\int \left(+2x + 3 + \frac{12}{x^2} \right) dx = x^2 + 3x - \frac{12}{x}$	A1	1.1b
		$\left((2\sqrt{2})^2 + 3(2\sqrt{2}) - \frac{12(\sqrt{2})}{2\times 2}\right) - (-8)$	M1	1.1b
		$=16+3\sqrt{2}$ *	A1*	1.1b
			(5 n	narks)
Notes	5:			
B1:	Corr	ect function with numerical powers		
M1:	Allo	w for raising power by one. $x^n \rightarrow x^{n+1}$		
A1:	Corr	ect three terms		
M1:	Subs	titutes limits and rationalises denominator		
A1*:	Com	pletely correct, no errors seen		

Quest	ion Scheme	Marks	AOs			
6	Considers $\frac{3(x+h)^2 - 3x^2}{h}$	B1	2.1			
	Expands $3(x+h)^2 = 3x^2 + 6xh + 3h^2$	M1	1.1b			
	So gradient = $\frac{6xh+3h^2}{h} = 6x+3h$ or $\frac{6x\delta x+3(\delta x)^2}{\delta x} = 6x+3\delta x$	A1	1.1b			
	States as $h \to 0$, gradient $\to 6x$ so in the limit derivative = $6x^*$	A1*	2.5			
		(4 n	narks)			
Notes						
B1:	B1: Gives correct fraction as in the scheme above or $\frac{3(x+\delta x)^2 - 3x^2}{\delta x}$					
M1:	Expands the bracket as above or $3(x + \delta x)^2 = 3x^2 + 6x\delta x + 3(\delta x)^2$					
A1:	Substitutes correctly into earlier fraction and simplifies					
A1*:	Uses Completes the proof, as above (may use $\delta x \rightarrow 0$), considers the limit and states a					

Pearson Edexcel Level 3 Advanced GCE in Mathematics – Sample Assessment Materials Issue 1 – June 2017 © Pearson Education Limited 2017

conclusion with no errors

Questi	on Scheme	Marks	AOs			
7(a)	$\left(2 - \frac{x}{2}\right)^7 = 2^7 + \binom{7}{1} 2^6 \cdot \left(-\frac{x}{2}\right) + \binom{7}{2} 2^5 \cdot \left(-\frac{x}{2}\right)^2 + \dots$	M1	1.1b			
	$\left(2-\frac{x}{2}\right)^7 = 128 + \dots$	B1	1.1b			
	$\left(2-\frac{x}{2}\right)^7 = \dots -224x + \dots$	A1	1.1b			
	$\left(2-\frac{x}{2}\right)^7 = \dots + \dots + 168x^2 (+\dots)$	A1	1.1b			
		(4)				
(b)	Solve $\left(2 - \frac{x}{2}\right) = 1.995$ so $x = 0.01$ and state that 0.01 would be substituted for x into the expansion	B1	2.4			
		(1)				
		(5 n	narks)			
Notes:						
B1: A1:	 M1: Need correct binomial coefficient with correct power of 2 and correct power of x. Coefficients may be given in any correct form; e.g. 1, 7, 21 or ⁷C₀, ⁷C₁, ⁷C₂ or equivalent B1: Correct answer, simplified as given in the scheme A1: Correct answer, simplified as given in the scheme 					
(b) B1:	Needs a full explanation i.e. to state $x = 0.01$ and that this would be substities a solution of $\left(2 - \frac{x}{2}\right) = 1.995$	cuted and th	nat it			

Question	Sc	heme	Marks	AOs	
8(a)	Way 1Finds third angle of triangle and uses or states $\frac{x}{\sin 60^{\circ}} = \frac{30}{\sin" 50^{\circ}"}$	Way 2Finds third angle of triangle and uses or states $\frac{y}{\sin 70^{\circ}} = \frac{30}{\sin"50^{\circ}"}$	M1	2.1	
	So $x = \frac{30\sin 60^{\circ}}{\sin 50^{\circ}}$ (= 33.9)	So $y = \frac{30\sin 70^{\circ}}{\sin 50^{\circ}}$ (= 36.8)	A1	1.1b	
	Area = $\frac{1}{2} \times 30 \times x \times \sin 70^{\circ}$ or	$\frac{1}{2} \times 30 \times y \times \sin 60$	M1	3.1a	
	$= 478 \text{ m}^2$		A1ft	1.1b	
			(4)		
(b)	Plausible reason e.g. Because the given to four significant figures Or e.g. The lawn may not be flat	e angles and the side length are not	B1	3.2b	
			(1)		
			(5 n	narks)	
Notes:					
 (a) M1: Uses sine rule with their third angle to find one of the unknown side lengths A1: Finds expression for, or value of either side length M1: Completes method to find area of triangle A1ft: Obtains a correct answer for their value of x or their value of y 					
	As information given in the question may not be accurate to 4sf or the lawn may not be flat so modelling by a plane figure may not be accurate				

Ques	tion	Scheme	Marks	AOs	
9)	Uses $\sin^2 x = 1 - \cos^2 x \Longrightarrow 12(1 - \cos^2 x) + 7\cos x - 13 = 0$	M1	3.1a	
		$\Rightarrow 12\cos^2 x - 7\cos x + 1 = 0$	A1	1.1b	
		Uses solution of quadratic to give $\cos x =$	M1	1.1b	
		Uses inverse cosine on their values, giving two correct follow through values (see note)	M1	1.1b	
		$\Rightarrow x = 430.5^\circ, 435.5^\circ$	A1	1.1b	
			(5 n	narks)	
Note	s:				
M1:	Uses	correct identity			
A1:	Corr	ect three term quadratic			
M1:		es their three term quadratic to give values for $\cos x$. (The correct answ $x = \frac{1}{3}$ or $\frac{1}{4}$ but this is not necessary for this method mark)	ers are		
M1:	Uses inverse cosine on their values, giving two correct follow through values - may be outside the given domain				
A1:	Two correct answers in the given domain				

Ques	tion Scheme	Marks	AOs		
10	Realises that $k = 0$ will give no real roots as equation becomes 3 = 0 (proof by contradiction)	B1	3.1a		
	(For $k \neq 0$) quadratic has no real roots provided $b^2 < 4ac$ so $16k^2 < 12k$	M1	2.4		
	4k(4k-3) < 0 with attempt at solution	M1	1.1b		
	So $0 < k < \frac{3}{4}$, which together with $k = 0$ gives $0 \le k < \frac{3}{4}$ *	A1*	2.1		
		(4 n	narks)		
Notes	5:				
B1:	Explains why $k = 0$ gives no real roots				
M1:	Considers discriminant to give quadratic inequality – does not need the $k \neq 0$ for this mark				
M1:	Attempts solution of quadratic inequality				
A1*:	Draws conclusion, which is a printed answer, with no errors (dependent on all three previous marks)				

Questio	n Scheme	Marks	AOs		
11 (a) Way 1	Since x and y are positive, their square roots are real and so $(\sqrt{x} - \sqrt{y})^2 \ge 0$ giving $x - 2\sqrt{x}\sqrt{y} + y \ge 0$	M1	2.1		
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a		
		(2)			
Way 2 Longer method	Since $(x-y)^2 \ge 0$ for real values of x and y, $x^2 - 2xy + y^2 \ge 0$ and so $4xy \le x^2 + 2xy + y^2$ i.e. $4xy \le (x+y)^2$	M1	2.1		
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a		
		(2)			
(b)	Let $x = -3$ and $y = -5$ then LHS = $\sqrt{15}$ and RHS= -4 so as $\sqrt{15} > -4$ result does not apply	B1	2.4		
		(1)			
		(3 n	narks)		
Notes:					
rc	Need two stages of the three stage argument involving the three stages, squaring, square rooting terms and rearranging Need all three stages making the correct deduction to achieve the printed result				
(b) B1: C	Chooses two negative values and substitutes, then states conclusion				

Question	S	Scheme	Marks	AOs
12(a)	$2^{2x} + 2^4$ is wrong in line 2 - it should be $2^{2x} \times 2^4$			2.3
	In line 4, 2 ⁴ has been replaced by 8 instead of by 16		B1	2.3
			(2)	
(b)	<u>Way 1:</u>	<u>Way 2:</u>		
	$2^{2x+4} - 9(2^{x}) = 0$ $2^{2x} \times 2^{4} - 9(2^{x}) = 0$ Let $2^{x} = y$ $16y^{2} - 9y = 0$	$(2x+4)\log 2 - \log 9 - x\log 2 = 0$	M1	2.1
	$y = \frac{9}{16} \text{ or } y = 0$ So $x = \log_2\left(\frac{9}{16}\right)$ or $\frac{\log\left(\frac{9}{16}\right)}{\log 2}$ o.e. with no second answer	$x = \frac{\log 9}{\log 2} - 4 \text{ o.e.}$	A1	1.1b
			(2)	
			(4 n	narks)
Notes:				
 (a) B1: Lists error in line 2 (as above) B1: Lists error in line 4 (as above) 				
 (b) M1: Correct work with powers reaching this equation A1: Correct answer here – there are many exact equivalents 				

Question	Scheme	1	Marks	AOs
13(a)	$x^{3} + 10x^{2} + 25x = x(x^{2} + 10x + 25)$		M1	1.1b
	$=x(x+5)^2$		A1	1.1b
			(2)	
(b)		cubic ith prrect ientation	M1	1.1b
	pa th or an at (s	arve usses rough the igin $(0, 0)$ id touches (-5, 0) ee note clow for ft)	A1ft	1.1b
			(2)	
(c)	Curve has been translated <i>a</i> to the left		M1	3.1a
	a = -2		A1ft	3.2a
	<i>a</i> = 3		A1ft	1.1b
			(3)	
			(7 m	arks)
Notes:				
	es out factor x rect factorisation – allow $x(x + 5)(x + 5)$			
 (b) M1: Correct shape A1ft: Curve passes through the origin (0, 0) and touches at (-5, 0) – allow follow through from incorrect factorisation 				
 (c) M1: May be implied by one of the correct answers for <i>a</i> or by a statement A1ft: ft from their cubic as long as it meets the <i>x</i>-axis only twice A1ft: ft from their cubic as long as it meets the <i>x</i>-axis only twice 				

Question	Scheme	Marks	AOs
14(a)	$\log_{10} P = mt + c$		1.1b
	$\log_{10} P = \frac{1}{200}t + 5$		1.1b
(b)	$\frac{\text{Way 1:}}{\text{As } P = ab^{t} \text{ then}} \\ \log_{10} P = t \log_{10} b + \log_{10} a \\P = 10^{\left(\frac{t}{200} + 5\right)} = 10^{5} 10^{\left(\frac{t}{200}\right)}$	M1	2.1
	$\log_{10} b = \frac{1}{200}$ or $\log_{10} a = 5$ $a = 10^5$ or $b = 10^{\left(\frac{1}{200}\right)}$	M1	1.1b
	So $a = 100\ 000$ or $b = 1.0116$	A1	1.1b
	Both $a = 100\ 000$ and $b = 1.0116$ (awrt 1.01)		1.1b
(c)(i)	The initial population		3.4
(c)(ii)	The proportional increase of population each year		3.4
(d)(i)	300000 to nearest hundred thousand		3.4
(d)(ii)	Uses $200000 = ab^t$ with their values of a and b or $log_{10} 200000 = \frac{1}{200}t + 5$ and rearranges to give $t =$		3.4
	60.2 years to 3sf	A1ft (3)	1.1b
(e)	 Any two valid reasons- e.g. 100 years is a long time and population may be affected by wars and disease Inaccuracies in measuring gradient may result in widely different estimates Population growth may not be proportional to population size The model predicts unlimited growth 		3.5b

Quest	Question 14 continued				
Notes	Notes:				
(a)					
M1:	Uses a linear equation to relate $\log P$ and t				
A1:	Correct use of gradient and intercept to give a correct line equation				
(b)					
M1:	Way 1: Uses logs correctly to give log equation; Way 2: Uses powers correctly to "undo"				
	log equation and expresses as product of two powers				
M1:	Way 1: Identifies log b or log a or both; Way 2: Identifies a or b as powers of 10				
A1:	Correct value for <i>a</i> or <i>b</i>				
A1:	Correct values for both				
(c)(i)					
B1:	Accept equivalent answers e.g. The population at $t = 0$				
(c)(ii)					
B1:	So accept rate at which the population is increasing each year or scale factor 1.01 or				
	increase of 1% per year				
(d)(i)					
B1:	cao				
(d)(ii)					
M1:	As in the scheme				
A1ft:	On their values of a and b with correct log work				
(e)					
B2:	As given in the scheme – any two valid reasons				
A1ft: (e)	On their values of <i>a</i> and <i>b</i> with correct log work				

Quest	ion Scheme	Marks	AOs	
15	Finds $\frac{dy}{dx} = 8x - 6$	M1	3.1a	
	Gradient of curve at P is -2		1.1b	
	Normal gradient is $-\frac{1}{m} = \frac{1}{2}$		1.1b	
	So equation of normal is $(y-2) = \frac{1}{2}\left(x - \frac{1}{2}\right)$ or $4y = 2x+7$	A1	1.1b	
	Eliminates y between $y = \frac{1}{2}x + \ln(2x)$ and their normal equation to give an equation in x			
	Solves their $\ln 2x = \frac{7}{4}$ so $x = \frac{1}{2}e^{\frac{7}{4}}$	M1	1.1b	
	Substitutes to give value for <i>y</i>		1.1b	
	Point <i>Q</i> is $\left(\frac{1}{2}e^{\frac{7}{4}}, \frac{1}{4}e^{\frac{7}{4}} + \frac{7}{4}\right)$	A1	1.1b	
		(8 n	narks)	
Notes	::			
M1:	Differentiates correctly			
M1:	Substitutes $x = \frac{1}{2}$ to find gradient (may make a slip)			
M1:	Uses negative reciprocal gradient			
A1:	Correct equation for normal			
M1:	Attempts to eliminate y to find an equation in x			
M1:	Attempts to solve their equation using exp			
M1:	Uses their x value to find y			
A1:	Any correct exact form			

Question	Scheme	Marks	AOs
16(a)	Sets $2xy + \frac{\pi x^2}{2} = 250$	B1	2.1
	Obtain $y = \frac{250 - \frac{\pi x^2}{2}}{2x}$ and substitute into P	M1	1.1b
	Use $P = 2x + 2y + \pi x$ with their y substituted	M1	2.1
	$P = 2x + \frac{250}{x} - \frac{\pi x^2}{2x} + \pi x = 2x + \frac{250}{x} + \frac{\pi x}{2} *$	A1*	1.1b
		(4)	
(b)	$x > 0 \text{ and } y > 0 \text{ (distance)} \Rightarrow \frac{250 - \frac{\pi x^2}{2}}{2x} > 0 \text{ or } 250 - \frac{\pi x^2}{2} > 0 \text{ o.e.}$	M1	2.4
	As x and y are distances they are positive so $0 < x < \sqrt{\frac{500}{\pi}}$ *	A1*	3.2a
		(2)	
(c)	Differentiates P with negative index correct in $\frac{dP}{dx}$; $x^{-1} \rightarrow x^{-2}$	M1	3.4
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{250}{x^2} + \frac{\pi}{2}$	A1	1.1b
	Sets $\frac{dP}{dx} = 0$ and proceeds to $x =$	M1	1.1b
	Substitutes their x into $P = 2x + \frac{250}{x} + \frac{\pi x}{2}$ to give perimeter = 59.8 M	A1	1.1b
		(4)	
			narks)
		101	

Question 16 continued

Notes: **(a) B1**: Correct area equation Rearranges their area equation to make y the subject of the formula and attempt to use with M1: an expression for PM1: Use correct equation for perimeter with their y substituted A1*: Completely correct solution to obtain and state printed answer **(b)** M1: States x > 0 and y > 0 and uses their expression from (a) to form inequality Explains that x and y are positive because they are distances, and uses correct expression A1*: for *y* to give the printed answer correctly (c) M1: Attempt to differentiate P (deals with negative power of x correctly) Correct differentiation A1: M1: Sets derived function equal to zero and obtains x =The value of x may not be seen (it is 8.37 to 3sf or $\sqrt{\left(\frac{500}{4+\pi}\right)}$) A1: Need to see awrt 59.8 M with units included for the perimeter

Question	Scheme			AOs
17 (a)	$\frac{\text{Wav 1:}}{\text{Finds circle equation}}$ $(x \pm 2)^2 + (y \mp 6)^2 = (10 \pm (-2))^2 + (11 \mp 6)^2$	Way 2:Finds distance between $(-2, 6)$ and $(10, 11)$	M1	3.1a
	Checks whether (10, 1) satisfies their circle equation	Finds distance between $(-2, 6)$ and $(10, 1)$	M1	1.1b
	Obtains $(x+2)^2 + (y-6)^2 = 13^2$ and checks that $(10+2)^2 + (1-6)^2 = 13^2$ so states that (10, 1) lies on C *	Concludes that as distance is the same (10, 1) lies on the circle C *	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$	or $\frac{1-6}{10-(-2)}$ (<i>m</i>)	M1	3.1a
	Finds gradient perpendicular to	their radius using $-\frac{1}{m}$	M1	1.1b
	Finds (equation and) y intercept	of tangent (see note below)	M1	1.1b
	Obtains a correct value for y intercept of their tangent i.e. 35 or -23		A1	1.1b
	<u>Way 1</u> : Deduces gradient of second tangent	<u>Way 2</u> : Deduces midpoint of PQ from symmetry (0, 6)	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance $PQ = 35 + 23 = 58*$		A1*	1.1b
			(7)	
	· · · ·			narks)

Question 17 continued

Notes:

(a) <u>Way 1</u> and <u>Way 2</u>:

- M1: Starts to use information in question to find equation of circle or radius of circle
- M1: Completes method for checking that (10, 1) lies on circle
- A1*: Completely correct explanation with no errors concluding with statement that circle passes through (10, 1)

(b)

M1: Calculates
$$\frac{11-6}{10-(-2)}$$
 or $\frac{1-6}{10-(-2)}$ (m)

M1: Finds $-\frac{1}{m}$ (correct answer is $-\frac{12}{5}$ or $\frac{12}{5}$). This is referred to as *m'* in the next note

M1: Attempts
$$y - 11 = their\left(-\frac{12}{5}\right)(x - 10)$$
 or $y - 1 = their\left(\frac{12}{5}\right)(x - 10)$ and puts $x = 0$, or

uses vectors to find intercept e.g.
$$\frac{y-11}{10} = -m$$

A1: One correct intercept 35 or - 23

<u>Way 1</u>:

M1: Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$

M1: Attempts the second tangent equation and puts x = 0 or uses vectors to find intercept e.g. $\frac{11-y}{10} = m'$

Way 2:

- M1: Finds midpoint of PQ from symmetry. (This is at (0, 6))
- M1: Uses this midpoint to find second intercept or to find difference between midpoint and first intercept. e.g. 35 6 = 29 then 6 29 = -23 so second intercept is at (-23, 0)

Ways 1 and 2:

A1*: Obtain 58 correctly from a valid method