Tools

- Triangle Area: \(A = \frac{1}{2}ab\sin\theta \)
- Sector Area: \(A = \frac{1}{2}r^2\theta \)
- Arc Length: \(L = r\theta \)
- Cosine Rule: \(a^2 = b^2 + c^2 - 2bc\cos A \)
- Sine Rule: \(\frac{\sin A}{a} = \frac{\sin B}{b} \)

Radial Words

- 3 and a bit radians = 180°
- 1° = 57.3°

\[\text{Degrees} \times \frac{\pi}{180} = \text{Rads} \]

Circle Words

- 1 chord makes 2 segments
- 2 radii make 2 sectors

Geometry

Triangles & Sectors

The point D lies on CB such that AD is an arc of a circle with centre A, radius 8cm.

The area of the triangle ABC is 20cm².

Find the area & perimeter of the shaded region.
A model of the path of two asteroids following a collision is given in terms of vectors.
The velocity of asteroid \(R \) is given by \(\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} - z \mathbf{k} \text{ m/s} \)
The velocity of asteroid \(S \) is given by \(\mathbf{r} = -2\mathbf{i} - 2\mathbf{j} + 7z \mathbf{k} \text{ m/s} \)

(a) Calculate the exact speed of each asteroid
(b) After 5 seconds, how much further (to the nearest metre) has \(S \) travelled than \(R \)?
(c) Calculate the angle between the asteroids' paths to the nearest degree
(d) Comment on the suitability of the model.