The reaction of ammonia, NH3, with oxygen to form nitrogen monoxide, NO, is an important 4 industrial process.

The equation for this reaction is shown in equilibrium 4.1 below.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$
 $\Delta H = -905 \text{ kJ mol}^{-1}$ **Equilibrium 4.1**

- (a) The forward reaction in equilibrium 4.1 converts NH_3 into NO.
 - (i) Complete the enthalpy profile diagram for this reaction.

On your diagram:

- Label the activation energy, E_a Label the enthalpy change of reaction, ΔH
- Include the formulae of the reactants and products.

[2]

(ii) 5.10 tonnes of NH₃ are converted into NO.

Calculate the energy released, in kJ, for this conversion.

Give your answer in **standard form** and to an **appropriate** number of significant figures.

(b) Write an expression for the equilibrium constant, $K_{\rm c}$, in equilibrium 4.1.

	[1]
(c)	Predict the conditions of temperature and pressure for a maximum equilibrium yield on nitrogen monoxide in equilibrium 4.1 .
	 Explain your prediction in terms of le Chatelier's principle. State and explain how these conditions could be changed to achieve a compromise between equilibrium yield, rate and other operational factors.
	21

© OCR 2018 Turn over