The reaction of ammonia, NH3, with oxygen to form nitrogen monoxide, NO, is an important 4 industrial process. The equation for this reaction is shown in equilibrium 4.1 below. $$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$ $\Delta H = -905 \text{ kJ mol}^{-1}$ **Equilibrium 4.1** - (a) The forward reaction in equilibrium 4.1 converts NH_3 into NO. - (i) Complete the enthalpy profile diagram for this reaction. On your diagram: - Label the activation energy, E_a Label the enthalpy change of reaction, ΔH - Include the formulae of the reactants and products. [2] (ii) 5.10 tonnes of NH₃ are converted into NO. Calculate the energy released, in kJ, for this conversion. Give your answer in **standard form** and to an **appropriate** number of significant figures. (b) Write an expression for the equilibrium constant, $K_{\rm c}$, in equilibrium 4.1. | | [1] | |-----|---| | (c) | Predict the conditions of temperature and pressure for a maximum equilibrium yield on nitrogen monoxide in equilibrium 4.1 . | | | Explain your prediction in terms of le Chatelier's principle. State and explain how these conditions could be changed to achieve a compromise between equilibrium yield, rate and other operational factors. | 21 | © OCR 2018 Turn over