
Handling Failure



Let's Try[T]
try {

val config: Map[String, String] = loadConfig(path)
} catch {

case _: IOException => // handle IOException
case _: Exception => // handle other Exception

}

Exceptions are handled inside try-catch blocks:

• multiple / nested try’s make the code hard to follow

• we can’t chain multiple operations prone to failure

sealed abstract class Try[+T]
case class Failure[+T](t: Throwable) extends Try[T]
case class Success[+T](value: T) extends Try[T]

A Try is a wrapper for a computation that might fail or not

• wrap failed computations

• wrap succeeded computations



Takeaways
Use Try to handle exceptions gracefully:
• avoid runtime crashes due to uncaught exceptions

• avoid an endless amount of try-catches

A functional way of dealing with failure
• map, flatMap, filter

• orElse

• others: fold, collect, toList, conversion to Options

If you design a method to return a (some type) but may throw an exception, return a 

Try[that type] instead.



Scala rocks


