
Options



The Billion-Dollar Mistake
“I call it my billion dollar mistake. It was the invention of the null reference in 1965. […] But I couldn’t resist the
temptation to put in a null reference, simply because it was too easy to implement.”

(Tony Hoare)

val string: String = null
println(string.length)

Exception in thread "main" java.lang.NullPointerException
at org.rtjvm.fundb.Main$.delayedEndpoint$org$rtjvm$Main$1(Main.scala:5)
at org.rtjvm.fundb.Main$delayedInit$body.apply(Main.scala:3)
…

method calls on null references result in NPEs 
and app crashes

val string: String = null
if (string != null) {

println(string.length)
}

working with null values leads to 
spaghetti code



Options

sealed abstract class Option[+A]
case class Some[+A](x: A) extends Option[A]
case object None extends Option[Nothing]

An Option is a wrapper for a value that might be present or not.

• Some wraps a concrete value

• None is a singleton for absent values

Options are present in many places:

val map = Map("key" -> "value")
map.get("key")   // Some(value)
map.get("other") // None

val numbers = List(1, 2, 3)
list.headOption // Some(1)
list.find(_ % 2 == 0) // Some(2)

lots of functions on all collections work with 
options

map uses options on its basic get operation; prefer it 
over apply



Options: Why and How
Use Options to stay away from the Boogeyman:
• avoid runtime crashes due to NPEs

• avoid an endless amount of null-related assertions

A functional way of dealing with absence
• map, flatMap, filter

• orElse

• others: fold, collect, toList

If you design a method to return a (some type) but may return null, return an 

Option[that type] instead.



Scala rocks


