- **18** This question is about free energy changes, ΔG , enthalpy changes, ΔH , and temperature, T.
 - (a) The Gibbs' equation is shown below.

$$\Delta G = \Delta H - T \Delta S$$

A chemist investigates a reaction to determine how ΔG varies with T. The results are shown in **Fig. 18.1**.

Fig. 18.1

What is significant about the gradient of the line and the values P and Q shown in Fig. 18.1 ? Explain your reasoning.
[4]

(b)	Iron can be extracted from its ore Fe ₃ O ₄ using carbon.
	Several equilibria are involved including equilibrium 18.1 , shown below.

equ	ıilibrium 18.1	$Fe_3O_4(s) + 4C(s) \iff 3Fe(s) + 4CO(g)$	$\Delta H = +676.4 \text{ kJ mol}^{-1}$ $\Delta S = +703.1 \text{ J K}^{-1} \text{ mol}^{-1}$
(i)	Why is equilib i	rium 18.1 a heterogeneous equilibrium?	
			[1]
(ii)	Write the expre	ssion for K_p for equilibrium 18.1 .	

[1]

- (iii) The forward reaction in equilibrium 18.1 is only feasible at high temperatures.
 - Show that the forward reaction is **not** feasible at 25 °C.
 - Calculate the minimum temperature, in K, for the forward reaction to be feasible.

minimum temperature = K [3]

© OCR 2017 Turn over

(iv) Another equilibrium involved in the extraction of iron from ${\rm Fe_3O_4}$ is shown below.

$$Fe_3O_4(s) + 4CO(g) \implies 3Fe(s) + 4CO_2(g)$$
 $\Delta H = -13.5 \text{ kJ mol}^{-1}$

Enthalpy changes of formation, $\Delta_{\rm f}H$, for ${\rm Fe_3O_4(s)}$ and ${\rm CO_2(g)}$ are shown in the table.

Compound	$\Delta_{\rm f}H/{\rm kJmol^{-1}}$
Fe ₃ O ₄ (s)	-1118.5
CO ₂ (g)	-393.5

Calculate the enthalpy change of formation, $\Delta_{\!f} H,$ for CO(g).

 $\Delta_{\rm f}H$, for CO(g) =kJ mol⁻¹ [3]