11. Mind Map: Work Energy Equations

www.TheScienceCube.com

k by This is your 'starting point' for all work-energy problems. Identify the forces & classify them first

Applies to conservative & non-conservative forces. Use this to calculate vel. or acc.when force is known

Helps define potential energy functions. Energy is stored and can be fully recovered

e forces	Use this when friction, deformation, or
e ernal.	heating is involved. /t's your energy 'ledger

is changing.	Used when energy is added/taken from a
nange	system — like throwing a ball or pulling a
	block with a rope.
work by	Ideal for friction problems on flat surfaces. No height or spring change here

Steps for Solving Work-Energy Problems

Step 1 |dentify all Forces Acting. List every force in the system gravity, normal, friction, tension, push/pull, spring, etc.

Step 2 Classify Forces as Conservative or Non-Conservative. Ask: Can this force store and return energy? Conservative: Gravity, spring force Non-conservative: Friction, air resistance, engine force, push/pull by a person

Step 3 Choose the Most Appropriate Energy Equation. Based on what's happening in the system (e.g., is there friction? a spring?), decide:

- Use $W_{net} = \Delta K$ for pure motion problems
- Use $W_nc = \Delta K + \Delta U$ if an external force changes mechanical energy
- Use $W_nc = \Delta K + \Delta E_th$ if friction is involved
- Use $W_nc = \Delta E_total$ for a complete energy breakdown

Step 4 Track Energy Gains and Losses Visually. What energy is gained (e.g., $KE \uparrow$)? What energy is lost (e.g., $E_{th} \uparrow due$ to friction)?

www.TheScienceCube.com

Step 5 Interpret the Result Physically. Ask: Does this answer make sense? Is the object speeding up or slowing down? Was energy conserved, or was some lost to heat/friction?

Glossary of Terms

- 1. W_net \rightarrow Total work done by all forces
- 2. $W_c \rightarrow W$ or k done by conservative forces (like gravity or springs)
- 3. W_nc \rightarrow Work done by non-conservative forces (like friction or air drag)
- 4. $\Delta K \rightarrow$ Change in kinetic energy
- 5. Δ*U* \rightarrow Change in potential energy
- 6. $\Delta E_{mech} \rightarrow Change in mechanical energy (\Delta K + \Delta U)$
- 7. ΔE_{th} \rightarrow Change in thermal energy (due to friction or heat loss)
- 8. $\Delta E_{int} \rightarrow Change$ in internal energy (like deformation, vibration, or internal heat)
- 9. $\Delta E_{\text{total}} \rightarrow T_{\text{otal}}$ change in all energy forms
- 10. $E_{mech} \rightarrow Mechanical energy(K + U)$

www.TheScienceCube.com

